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1 Manifolds and differential forms

1.1 Reminder from calculus in several variables

Differentiability. The map F': U — R" is called differentiable in x¢ € U if F' is near
xo well approximable by a linear map in the following sense: There exists a linear map
L:R™ — R™ st. F(xzg+ h) = F(zo) + L(h) + r(h) with an error r (defined in a
neighbourhood) which is of smaller order than h,

R OINN
h—0 ||h|

We also write F'(zg + h) = F(xo) + L(h) + o(||h|]).
If F is differentiable in x¢ then L is uniquely determined and called the differential of

F in xg
dF(xo) € Hom(R™,R").
If for v € R™ the limit 0,F(xg) = %i%w exists, it is called directoral
—
derivative of F' in direction of v. Partial derivatives are defined as

oF
al'i

(x0) 1= O, F ().

if F' is differentiable in xg, then all directorial derivatives in xy exist and 0, F(xg) =
dFy,(v). Relative to the standard basis (of R™ and R"™) the differential dF'(x() is given

by the Jacobian matrix
<8Fi>
9% ) i<nsj<m
If n =1, ie. if F is a real valued function, then dF,, € Hom(R™,R) = (R™)* is al

linear form and corresponds via the standart scalar product (e, ») on R to the gradient
VF(zp) of F in xq:

dF,, = (VF(xg),*)

Warning: partial differentiability # total differentiability. However, if the partial
derivatives exist near zg and are continuous in zg, then the map is differenatiable in x.
In particular, the following statements are equivalent:

a) F is partially differentiable on U and the partial derivatives are continuous

b) F is differentiable on U and the differentail is continuous as map U — Hom (R, R") =
R™ : xg — dF(z0).

Such maps are called continuously differentiable or of class C'. More generally, one
calls k times continuously differentiable maps of class C*, k € Ny U {oo} (C? is just
continuous).
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A C* diffeomorphism between open sets V, W C R™ is a bijective C*-map F : V —»
W whose inverse F~1: W — V is also a C*-map (if k¥ = 0: homeomorphism).

Amap F : U — R™, U C R™ open, is called a local C*-diffeomorphism in g, if
there are open neighbourhoods V of zg in U and W of F(zg) in R™ s.t. Fyy : V — W
is a C*-diffeomorphism.

We observe: F is a local diffecomorphism in zg = dFy, is invertible (as a linear map),
because by the chain rule:

dGy, o dFy, = d(G o F)y, = idgm
idRm
Inverse Function Theorem (Umkehrsatz): Suppose that F': U — R™ is C*21 U ¢ R™
open, g € U. If dF}, is invertible, then F is a local C* - diffeo.
Remark. dFy, invertible < det ggj (zg) # 0.

Clever application of the Inverse Function Theorem yields as a corollary the following
generalization:

Implicit Function Theorem: Suppose that U C R is open, m > n and F : U — R"
is C*¥21. Furthermore let R™ = E7" " @ EY a direct sum decomposition into linear
subspaces with dimE; = m —n, (g € E1,y0 € E2) € U and Zy := F(zo,y). If
dF(x0,Y0) ik, : 2 — R™ is invertible, then there exist open neighbourhoods Vi of x
in By, V5 of yg in Fy and W of zp in R™ and for each z € W a Ckmap G, : V; — Vs

s.t. Fl) NV x Vs, = {(z,G.(z)) /= € V;}. Furthermore, G, depends C*-
————
solutions of F(x,y)=z near (zo,Y0) graph of G,

differentiably on z, i.e. the map Vi x W — R™ : (z, 2) — G,(x) is C*- differentiable,
more precisely a C*-diffeo onto an open neighbourhood of (z9, o), with G, (o) = vo.

Remark.

i) Near (zg,yo) the function/map G, is implicitly given by the equation F'(z, G,(z)) =
0

ii) Let p € U. There exists a decomposition R"™ = E; @ E» s.t. dF,g, is invertible
and dF), is surjective.
Remark.

Let pp € U. A decomposition R™ = E; @ Ey such that dF),,|g, is invertible, exists iff
dFj, is surjective.

Definition 1.1. Let F': R™ > U — R" with U open be €*-differentiable.

1. A point x € U is called regular if dF, is surjective, and critical or singular other-
wise.

2. A value y € R” is called regular if all points x € F~!(y) are regular, and critical
or stngular otherwise.
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Remark.
1. Values which are not attained are trivially regular.

2. Sard’s theorem says that the set of critical values has Lebesgue measure zero in
R™.
Definition 1.2.

1. F is called a submersion, if dF, is surjective for all x € U, i.e. all points are
regular, or equivalently, all values are regular.

2. F is called an immersion if dF, is injective for all z € U.

As a consequence of the implicit function theorem, for y € R™, the set of solutions
of the equation F(x) = y is in every regular point locally a graph. In particular, it
is locally parametrizable by independent coordinates. This leads us to the notion of a
submanifold of Kuclidean space.

1.2 Submanifolds of Euclidean space

Submanifolds of R™ are subsets which are regular in the sense that they can be made
flat locally by a suitable coordinate change, i.e. be transformed into an affine subspace.
In particular, they can be locally parametrized by independent coordinates.

Definition 1.3. Let 0 < d < n, k > 1. A subset M C R" is called a d-dimensional
differentiable submanifold of class €*, if for every point € M there exists a €*-
diffeomorphism ¢: U — V from an open neighborhood U of x in R™ onto an open
subset V' C R", such that

(M NU) = REx {0})NV
Example.

1. The unit sphere
st = {:U e R"”

zn::vf = 1}

i=1

is covered by the open (relative to the subspace topology) subsets S™ N{xz|zy = 0}.
These can be made flat, for instance by the map

1/2
o(x) = x$<1 - Zm?) ek
itk
2. The following subsets are not submanifolds in R?:

We now give two characterizations of submanifolds. First, we characterize them locally
as solution sets.



Theorem 1.4. The inverse images of reqular values of C*2'-maps F: R™ > U — R™
are €*-submanifolds of dimension n —m, i.e. codimension m.

Proof. Consequence of the implicit function theorem.
Example.

1. The unit sphere S"~! is a ¥>°-submanifold since it is the inverse image of 1 under
the €>°-map F(z) = ||z|*.

2. Consider
det: GL(n,R) — R*

where GL(n,R) is viewed as an open subset of R"*™. det is smooth, since it is
polynomial. We have (exercise)

(ddet)E = tr.

Hence ddetg is surjective and E is a regular point for the determinant. With
the multiplicativity of det follows that all A € GL(n,R) are regular points for
det, because differentiating det(AX) = det(A) det(X) with respect to X in F in
direction V' yields

(ddet) 4(AV) = det(A)(ddet) (V) = det(A) tr(V)

so ddety = det A - tr(A~'—), which is surjective. So all points and values are
regular, i.e. det: GL(n,R) — R* is a surjective submersion. In particular, 1 is a
regular value which implies that SL(n,R) = det™*(1) is a smooth submanifold of
codimension 1.

3. To show that the orthogonal group
O(n) = {A € GL(n,R)|AA" = E}
is a submanifold, consider
F: GL(n,R) = Matgym(n x n, R) = R"™ /2 Xy X X?,

Then dFx(H) = HX' + XH' and dFx(E) = H + H*. So E is a regular point
for F, F(E) = E, and thus O(n) = F~1(E) is a ¥*-submanifold locally at E,
i.e. there exists an open neighborhood U of E in GL(n,R) such that O(n) N U
is a ¢°°-submanifold. Due to the homogeneity, O(n) is in every point A locally
a submanifold, because left multiplication L: X — AX is a ¥°°-diffeomorphism
of GL(n,R) and preserves O(n). So O(n) is a ¢°°)-submanifold with dimension
n? —n(n+1)/2.

Second, we characterize manifolds locally by parametrizability.



Definition 1.5. A d-dimensional local €*-parametrization of M near p is a map
vV EU =MnU3p
where V/ U’ are open in M and F is a homeomorphism and a €*-immersion.

Remark. In general, injective immersions are no homeomorphisms onto their image (topo-
logical embeddings).

Example. Consider the curve

(=1,00) —— R?

+ | t t2
' 1+t30 1483 ) -

It is injective and C'°°-smooth, but its inverse is not continuous.

For a subset M C R™ holds: M is a submanifold if and only if there exists a local
parametrization. (One direction is trivial, the other is given by the Inverse Function
Theorem).

Proposition 1.6. Let M C R". M is a submanifold of R™ if and only if there exists a
local parametrization.

Proof. We start with a local parametrization F' near p, F'(0) = p. We thicken F' to a
¢*-differentiable map

V' x (—e,e)" ¢ —L£ R
such that dFy is surjective. Then the Inverse Function Theorem yields that F is locally
invertible at 0, i.e. there is a neighborhood V; of 0 such that F|y, is a €*-diffeomorphism
onto F(V;). We have

FRYx {0}nVi)) c MNU,

To achive equality, we shrink V; (and Up). Since F' is a homeomorphism onto its image,
F(R? x {0} NV4) is open in M, so it can be written in the form M N Uy, where Us is an
open subset of U;. Define V; := (F|y, )1 (Uz). Then

FRIx {0}NVs) = FRIx {0} N V) NF(Va) = (M NU) NUy = M N Us.
So (Fy,)~! makes M flat near p, i.e. M is a submanifold. O
Example. Consider the unit sphere S"~! = {z € R" | ||z| = 1}.
1. The local parametrization results from S"~! being locally a graph. For example,
o {y e R Myl <1} = 5" Ly = (v, (1= ly]»)"?)

is a parametrization of the upper hemisphere: Its image is the open subset S~ !N
{2, > 0} of S"! and it is inverted by the projection onto the first n — 1 compo-
nents.



2. Another way to parametrize the sphere is the stereographic projection: It is given
by the formula

on: SN} = R 2 1 (1,0 Tp—1)

—
where N = (0,...,0,1) is the north pole of the spere. Its inverse is given by

1

Y= W(zyla ey 2Yn—1, H?/||2 —1).

Geometrically, it projects a point x € S"~! \ {N} to the unique point y € R*~1
such that z, N, and (y,0) lie on one line.

Analogously, one can define the projection
o5: ST {S} —» R

where S = (0,...,0,—1) is the south pole of the sphere.

We summerize:
Theorem 1.7. For M C R" are equivalent:

1. M is a d-dimensional submanifold.
2. M is locally the image of a reqular value of a R* *-valued €*-map.
3. There exist local d-dimensional €*-parametrizations of M.

The system of local parametrizations forms the differentiable structure on M, which
enables us to do Analysis (differentiate etc.) intrinsically (without reference to the
ambient space).

Let M be a d-dimensional submanifold of R”, p € M, and ¢: U — V the map that
locally flattens M. Then the restriction of ¢ to M NU is a homeomorphism onto an open
subset V' of RY%. Tt is called a local chart or local coordinate map. It is the inverse of a
local parametrization. We observe that the coordinate changes are €*: Let Uy N M and
Uy N M be two open subsets of M (Uy, Us are open in R”). The two €*-diffeomorphisms
¢1, 2 which flatten M map Uy, Us to open subsets ¢1(Uy), ¢p2(Uz) C R™. If Uy NUz # @,
the coordinate changes are given by restrictions of ¢o o ¢f1 and ¢1 o ¢y L.

¢z 07t RY X {0} N g1 (Uy NUz) — R x {0} N ¢o(Uy N U)

d10dy 1t R x {0} N (U NTU) — RE x {0} Ny (U NUR)

These are mutually inverse €*-diffeomorphisms.
This compatibility of local charts makes it possible e.g. to define differentiability of
functions f: M — R which are given only on M.



Definition 1.8. A function f: M — R is called [-times differentiable in x € M, [ < k,
if for some chart x around z the function f o x~! defined on the open subset Im(k) is
I-times differentiable in x(z). This is independent of the chosen chart k. Indeed, if ' is
another chart around x, then

for' ™ =(for)o(kor™)

Since the coordinate change ko x/~! is a €*-diffeomorphism, fox'~! is €*-differentiable
if and only if f o k="' is. This definition of differentiability is intrinsic since it does not
refer to the ambient Euclidean space.

This leads us to the notion of abstract manifolds, i.e. manifolds which are not a priori
embedded into Euclidean space).

1.3 Abstract differentiable manifolds

Definition 1.9. A topological space (X, T) is called d-dimensional locally Euclidean if
every point has a local neighborhood which is homeomorphic to an open subset of R¢,

In particular, there exist local parametrizations by independent coordinates.
Example.

1. ¥Y-submanifolds of R as abstract topological spaces are locally Euclidean.

2. The eight and the X (see above) are not locally Euclidean.

Example of an "abstract" locally euclidean space which does not arise in a natural way
by a distinguished embedding into an euclidean space: real projective space:

RP? := {1 — dim linear subspaces of R¥1}

To a point R, represented by = = (xg,21,...2,) € R4 — {0} one assigns the homoge-
neous coordinates [z] = [zg : - - : 4] . They are unique up to scaling

[z] = [2/] & 3\ € R*with 2’ = Az.
One equippes RP? with the quotient topology with respect to the projection 7 :
R — {0} — RP?
x — Rx = [z].

Open sets in RP? correspond to open double cones in R4T!. Note that 7 is an open map.
Restricted to the unit sphere S¢ ¢ R4+ — {0}, the projection corresponds to dividing
out the antipodal involution z — —z.

g Jncusion pd+l _ (g} T, Rp

d
54 T, pp

2:1
gd iz} §4/+1 {wv—w}fﬂ%w:[w} RP?
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Also 7|ga is open, because for small 7 > 0 and z € R¥! with ||z = /(1 + 22) holds

m|ga(B(z,r)NSY) =x(  B(z,r) ) isopen in RPY because m open.

—_——
open in Rd+1-{0}

7|ga is continuous, open, locally injective (e.g. injective on open hemispheres) = 7|ga

. S%oc.eucl. . .
is local homeo ~ =" RP? is local euclidean.

A homeomorphism U - x(U) of an open subset U C X onto an open subset x(U) C R?

is called a local chart or set of local coordinates. U is called the domain of the chart.
K/Qolif

If (Ui,ki),i = 1,2 are two charts, then the coordinate change x1(U; N Us)
ro(Up N Us) is a homeo between (possibly empty) open subsets of RY.
An atlas is a family (A) of charts (U;, k;),7 € I (index set), which cover X, X = |J U;.
i€l
Two charts are C*- compatible if the coordinate changes in boths directions are C*-
differentiable and hence C*-diffeomorphisms. An atlas is called C*-differentiable if any
two of its charts are C*-compatible. A C*-differentiable atlas is contained in a unique
maximal C*-differentiable atlas which arises by adding all C*¥-compatible charts.

Definition 1.10. A C*- differentiable structure, 1 < k < 0o, on a loc. eucl. space is a
max C*- differentiable atlas.

Example:

1) If M C R™ is a C*-submanifold, then the local parametrizations, 1 < I < k, form a
C*-differentiable structure on M, the natural one induced by R”.

2) 871 = {||z|| = 1} € R™ The natural C*-differentiable structure induced by R" is
generated by an atlas consisting only of two charts, namely the sterogrphic projections

_ _ 1
ky: S {xe,} — RV 2z — IZFxn(:L'l,...xn_l).
We compute the coordinate change:
1 L | 1
= Tl Tp_1) —> T —> Tl Tp_1) = ——
) 1+$n( 1 n—1) l—xn( 1 n—1) ||y||2y
ol = AZa = 1o
v = 1+2,)2 14z,
3) RP¢. Consider for i = 0,...,d the bijection
U; := {[z] € RP?/z; # 0} &5 RY
[xg: - xq] — (xo,...xi,‘rd>

10



RO — {0} Iy (universal property of quot. topology)
R — {0} 5 RP?

rRP¢ Ly y

f continuous < f continuous

K; is continuous because x; o 7r|7T71(U2_) T — (%, e %, %”) is continuous (we use
here the universal property of the quotient topology).
The coordinate changes are rational functions defined on hyperplane complements

and therfore smooth (= C*°), for instance

-1

{y e RYyy # 0} 2 Ugn Uy 25 {y € Ry # 0}
) yd)

y173/17 Y1

We see that the atlas is C*°-differentiable and defines a C'*°-differentiable (smooth)
structure on RPY,

(yl,...yd)—>[1:y1:"-:yd]—>(

The differentiable structure enables us to transfer local analytic concepts from eucl.
spaces to local eucl. spaces.

Let X4 £ Y be a continuous map equipped with C¥21-differentiable structures. For
z € X and charts X DU & k(U) of X around x and Y D U’ % (U’) of Y around F(x),
we call

k(U NFHUY)) ol vy c RY
in X
open in

open nbh. of x(z) in R¢

Definition 1.11. F is called 1 times resp. C!-differentiable in x, if the local coordinate
representations £’ o F' o k=1 of F near x are 1 times, resp. C'-differentiable in (z).

Definition 1.12. Let X,Y be ©¥* manifolds. A function F': X — Y is called [ times
differentiable (€'-differentiable) in x (1 <1 < k) if there exist local coordinates & around
x and £’ around F(x) such that ' o F o k! is [ times differentiable at x(x).

Remark.

1. A function G: R > V — R? is [ times differentiable in y € V if G is €'1-

differentiable on an open neighbourhood of y in V' and the (I — 1)-st differential is
differentiable in y.

2. Differentiablility does not depend on the choice of local coordinates: Let k1, k9 be
two coordinate systems near x € X and &/, kb coordinate systems near F(z) € Y,

then

1 -1

Kho Foky' = (khor ) o(kjoFori ) o (ki oryt)

11
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and (k) o k1) as well as (k1 o Ky ') are €F-diffeomorphisms, so (kb o ky ') is

¢'-differentiable if and only if (k] o F o k') is €'-differentiable.

3. If F: X — R? is a continuous function, then we regard R? as a locally Euclidean
space equipped with the natural differentiable structure generated by the atlas
{idga }, and define differentiability using the local coordinate representations F o
KL

We denote the space of all '-maps X — Y with €'(X,Y). In particular C/(X) =

€' (X,R). The composition of €'-maps is €.

Definition 1.13. A homeomorphism F: X — Y of €* manifolds X,Y is called a %*-
diffeomorphism, 1 <1 < k, if F and F~! are €'-differentiable. A function F': X — Y is
a local €'-diffeomorphism if every point in X has an open neighbourhood U such that
Fly: U — F(U) is a €'-diffeomorphism onto an open subset F(U) C Y.

Example.
1. The natural 2:1 covering S? — RP? is a local €*°-diffeomorphism.

2. For any A € O(d + 1), A: 8 — S?% is a ¥>°-diffeomorphism, and for all A €
GL(d + 1,R), A: RP? — RP? is a €>°-diffeomorphism.

Definition 1.14.

1. A topological manifold (¢°-manifold) is a locally Euclidean Hausdorff space whose
topology admits a countable basis (is 2nd countable).

2. A €*-differentiable manifold is a topological manifold together with a €*-differen-
tiable structure.

Remark. One asks the Hausdorff property to be able to seperate points by continuous
functions, and the 2nd axiom of countablility implies the existence of a partition of unity.

Example.

1. The Euclidean space R" is locally Euclidean, Hausdorff and 2nd countable. Its
¢ >°-differentiable structure is generated by the atlas {idgn }.

2. The €*-submanifolds of R™ are in a natural way €*-differentiable manifolds.

3. RP? is a €>-differentiable manifold, because the Hausdorff and 2nd countability
properties carry over from Rt1,

Definition 1.15. Let M be an m-dimensional €*Z0-differentiable manifold. A subset
N C M is an n-dimensional €'<F-submanifold, if around any point z € N there exists a
¢'-differentiable chart (U, ) such that x(NNU) = R"x {0} "Nk(U). Then N is (with
respect to the relative topology inherited from M) n-dimensional locally Euclidean. The
Hausdorff and 2nd countability properties carry over from M to N. The restrictions
of the charts generate the natural differentiable structure of N. So submanifolds are
manifolds in a natural way.

12



Example.

1. Consider (R x {0} UR x {1})/ ~ where (z,0) ~ (z,1) for all x € R ~ {0}. This
space is 2nd countable and locally Euclidean, but not Hausdorff.

2. The long line: Let (W, <) be a well-ordered set and L = W x [0,1) and give it the
lexicographical order, i.e.

(w,t) < (W, ) = w<w Vw=uw At<t).

This order induces an order topology (generated by the the open intervals). We
call z € W good, if L, ) = {(w,?) < (x,0)} is empty or homeomorphic to [0, 1).
We observe the following:

a) A limit of an increasing sequence of good elements of W is also good.

b) if Wy = {w | w < z} is countable, x is good. To prove this, assume z is bad.
Without loss of generality all w € W, are good. (If not, replace x by the
smallest bad w in W,,). There exists a sequence (x,,) C W, such that x,, /' z,
so x is good.

c) If W, is uncountable, x is bad, because L,y contains uncountably many
disjoint open subsets.

To construct the long line, choose W uncountable such that all initial segments
W, are countable. Then for L™ = L \. min L holds:

a) L7 is 1-dimensional locally Euclidean, since it is covered by L, ¢y = [0, 1).
b) LT is path connected.

c¢) The topology of L™ has no countable basis, because there exists an uncount-
able family of disjoint open sets.

Remark. One can equip a set directly with a structure as differentiable manifold by
providing a suitable atlas. The topology will result implicitly. We start with the following
data: A set M and an atlas consisting of charts

ki U; =V, 1€l

which are bijections from U; C M to open subsets V; € R%, such that the coordinate
changes k; o /{[1 are defined on open subsets and €*-differentiable.

The topology arises as follows. We define the neighbourhoods of a point p on the subset
W C M such that for the charts k; with pinU; the subset x;(W NU;) is a neighbourhood
of ki(p) in V;. This is independent of the chart ;! The axioms for neighbourhoods are
satisfied (finite intersections and larger subsets are again neighbourhoods).

The open subsets are then those which are neighbourhoods of all their points. We
obtain:

OCM <&k (0ONU;) CV;open Vk;

13
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With this topology on M the charts x; become homeomorphisms of open subsets and
M become a d-dimensional locally Euclidean space. If the atlas is countable (or has a
countable subatlas), the topology of M has a countable basis. The Hausdorff property
does in general not follow for free and has to be verified in the concrete case at hand.
The given atlas yields a €*-differentiable structure on M.

Example (RP? revisited). On the set RP? of 1-dimensional subspaces of R4T! we
consider the same atlas as before

it Ui = i R¢ oo @ xd)
i Ui = {la] [ £ 0) > RO o] o (22,0 20 20

The coordinate changes are defined on hyperplane complements and smooth. The Haus-
dorff property is clear. Hence we obtain on RP? a structure as smooth manifold.

Example. The Grassmannian Grg(R™) is the space of all k-dimensional linear subspaces
LF CR", 1<k <n—1. We will put on it a structure as a smooth manifold by giving
a suitable atlas. Every direct sum decomposition R = V¥ @ W"~* yields a chart

wvw: Uvw = {LF CR"| L h W} — Hom(V, W), graph(F) ~ F

We investigate the domains of definition and smoothness of the coordinate changes. The
components with respect to two decompositions V@ W = R"™ = V' & W' transform into
each other linearly, i.e.

v+w=1v+uw = v' = Av+ Bu
- w' = Cv + Dw

where A, B, C, D are linear maps such that

(& 5)

is a block decomposition of idg» with respect to the two direct sum decompositions.
Let L € Uyw N Uy wr, i.e. L W, W', and let graph(F) = L = graph(F’) with
F € Hom(V,W) and F’' € Hom(V',W'). We decompose the vectors in L and obtain

/
) / v'= Av+ BFv = (A+ BF)v
v+ Fvo=v+Fv :{F//:C’U—FDFUZ(C—’—DF)U

where A+ BF € Hom(V, V) is invertible, because L h W, W', so
F'=(C+ DF)(A+ BF)™!

Hence the coordinate changes are defined on open subsets and are smooth.

There exist finite subatlasses (e.g. corresponding to decompositions by coordinate
subspaces), and hence a countable basis for the topology of Grg(R™). The Hausdorff
property is easy to check (exercise). We obtain on Grg(R"™) a stucture as a smooth
manifold.
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Remark.

1. The group GL(n,R) operates on Gry(R") by diffeomorphisms, because it preserves
our atlas.

2. The projective space is a special case of the Grassmannian, Gry(R") = RP""!,
and Gr,,_x(R"™) is diffeomorphic to Grg(R™).

1.4 The tangent bundle of a differentiable manifold
1.4.1 Tangent spaces to submanifolds of Euclidean space

Let first A C R™ be an arbitrary subset. A vector v € R" is a tangent vector to A at
p € A if it is the velocity vector of a curve in A through p, i.e. there is a € '-differentiable
curve
c: (—e,e) = A
such that ¢(0) = p and ¢(0) = v.
The set T, A of all tangent vectors to A in p may be called the tangent (double) cone
to A in p, since
velTpA=RvCT,A
because
d
dtf,_g
The tangent cone is preserved by (differentials of) diffeomorphisms: If A;, Ay C R”
are subsets and if ¢)U; — Uy is a diffeomorphism of open subsets such that ¢(4;NU;) =
A N Us, then for every point p; € Ay NU; and ps = ¥(p1) € A2 N Uz holds

dd)}h (TP1A1) = TP2A2'

c(At) = AH(0)

Indeed, if ¢;: (—&,e) — A1NU; is a differentiable curve then cp = 1oc; is a differentiable
curve in Ao N Uy and the chain rule implies

dy(€1(0)) = (¢ 0 c1)'(0) = ¢2(0).
For linear subspaces L C R™ holds
T,L=L VxelL

It follows for submanifolds: The tangent cones T, M to a d-dimensional ¢’*=1-differentiable
submanifold M C R" are d-dimensional linear subspaces and are called the tangent
spaces to M at p e M.

08.11.2012

The property of T,M of being a linear subspace can also be seen as follows: If V' Ei
M N U is a local C*-parametrization near p, F(0) = p, and if U & R" % is a C*-
submersion s.t. M NU = s71(0), then we have

imdFy C T,M C ker dS),
——

~—
dim =d surj.

———
dim=d

15



= equality holds: T),M is d-dim linear subspace.
Towards an intrinsic definition of the tangent space:
Two curves (—e¢;, €;) %) M represent the same tangent vector if they agree up to first

order in 0, i.e.
cl (0) = CQ(O) AN ¢ (0) = CQ(O)

This equivalence relation on differentiable curves in M can be expressed in terms of local
coordinate charts and one thereby obtains an intrinsic definition of tangent spaces which
carries over to. ..

1.4.2 Tangent vectors and differentials

Let M™ be a C*2! manifold. We say that two Cl-curves (—¢;, ¢;) % M agree up to
first order in 0, if ¢1(0) = ¢2(0) := p and if for a chart around p holds

(koc1) (0) = (koca) (0).

This is independent of the chart:

, .
(K oci) (0) =
coo. change (k'ok~1)o(koc;) chain rule

d(x' o Iiil)n(p) ((/@ ) ci). (0))
N

invertible

An equivalence class of curves agreeing up to first ofder is called a 1-jet (of curves) (here
in p).

Definition 1.16. A tangent vector to M is a 1-jet.
The set of all tangent vectors to M in a point p € M is called the tangent space 1), M.

The set TM = |J T,M of all tangent vectors is called the tangent bundle.
peEM

Remark: Tangent spaces to different points are disjoint (think of them as vertical to
the manifold).

A differentiable map M™ Fy N7 of differentialbe mainfolds induces the map of tangent

bundles TM 25 TN, [c] — [F o ¢], the differential of F. It is well defined because for
charts x around ¢(0) and " around F(c(0)) holds:

K o(Foc)= (kKoFok 1) o(koc)
—_———
loc. coo. rep. of F
= chain rule:  (x' 0 (F 0 0)) (0) = d(x' o F o 5~ )iy (50 0) (0).

old differential (Ana II)

Hence [F o ] depends only on [c].
The differential maps tangent spaces into tangent spaces, dF(T,M) C Tpp)N and we

write dF), := dF |Tp a- The chain rule holds: If M N E) W are diff. manifolds, then
d(G o F) = dG o dF because

d(Go F)([c]) =[G o Foc]=dG[F oc] =dG(dF([c])).

16



Remark: The differentiable structure as defined above is consistent with the “old”
differential because for a diff. map

R™ > U open 5 R", (Foc) (0) = dF,q) - &(0)

holds according to the old chain rule.

1.4.3 The linear structure on tangent spaces

For open subsets U C R™, we have the natural identifications

T,U —=— R,
c—¢(0)
and therefore linear structures on the tangent spaces. The differentials of differentiable
maps U — R™ are linear. This carries over (via charts) to abstract manifolds.
Let M, be a differentiable manifold. A chart (U, k) around p € M yields the identifica-
tion

dkyp

T,M =% Ty, U = R™

(»

And thus a linear structure on T, M. It does not depend on the chart because according
to the chain rule

/ -1 __ / -1
dlﬁp o (d/ﬂ'/p) = d(/ﬁ; OR )n(p)
——
(de=1) old differential, hence linear

is an isomorphism of vector spaces. It is clear that the differentials act linearly on tangent
spaces i.e. that the maps
de : TpM — Tp(p)N

are linear.

Local coordinates distinguish bases of tangent spaces: Let (U,x) be a local chart around
p. W.r.t. the identification (x) T,M — R™, [c] — (xzoc) (0) the standard basis vector
e; € R™ corresponds to the tangent vector [¢;] with ¢;(t) = 271 (x(p) + te;) near t = 0.
For reasons which become clear later (when we interpret tangent vectors as directoral
derivatives) we use the notation

0
oy = led

Definition 1.17. { B%JP} is called the standard basis of T,M w.r.t. local coordinates
x. An arbitrary tangent vector [c| € T, M corresponds via (x) to the vector (xoc) (0) =

. m :
> i(x; 0c¢) (0)e;, and we obtain the representation [c] = > (z; 0 ¢) (O)ax%ﬂp
i=1 !

Matrix representation of the differential dF : TM — TN w.r.t. the standard basis:

M F N7 [C] y [F o C]
7 5
m F n : ’
Vi CR™ —— Vv C R (z0¢)(0) ——=——(yo Fo)(0)
z(p)

17



W.r.t the standard bases {e;} resp. {e;} of R™ and R", dFac(p) is given by the Jakobi
matrix (gfj (x(p))) ) These correspond via the differentials of local charts x resp.
1= n

=1,...

y to the associated standard bases {8 |p} of T, M, resp. {az |Fp)} of Tr(p)N.
Therefore
Z o let
893] 3y

Transformation of standard bases in case of coordinate change: We put M = N and
= id M. We write the coordinate change suggestively as Z(x). Then

Z 8:132 6 |
(%‘J P
respectively,
axj
0%; |p Z 835, 8~ |p ’

13.11.2012

1.4.4 The differentiable structure on the tangent bundle
LetM™ be a €*-manifold. The natural projection

=1l M — M
peEM

is given by the footpoint projection, i.e. 77 1(p) = T,M. A chart (U,z) of M induces

local coordinates:
= (95(29), ZW&)

which we will use as a chart for TM. If (U, Z) is another chart on M, then the coordinate
change is given by

b,
Tz:TU = || T,U — 2(U) x R™ c R*™, vi
pIE_!J g ) zz: &Uip

2UNT)xR™ 5 H5UNT) xR™,  (2(p),v ( szjax’x a).

We see that coordinate changes are defined an open sets and are €%~ -differentiable. It
follows (compare the technical remark above) that the atlas consisting of the charts Tx
yields on the set T'M a natural topology as 2m—dimensional locally Euclidean space and
a €+ -differentiable structure. The topology on T'M has a countable basis since there
are countable subatlases. The Hausdorff property is clear. We conclude

Theorem 1.18. If M is an m—dimensional €*=' ~manifold, then TM carries a natural
induced structure as a 2m—dimensional €% ~manifold.

18



Remark. The projection m: TM — M is €% 1-differentiable, which is the maximum
possible degree of differentiability.

If F: M — N is a €"—map of ¥*—manifolds with 1 < I < k, then a local coordinate
representation shows that its differential dF: TM — TN is €'~ differentiable.

) OF, )
dF) (axj p) => oz, (z(p)) 7

i
because the entries of the Jacobian matrix depend €'~ -differentiably on the point.

F=yoFox!

F(p)

1.4.5 Tangent vectors as derivations

One can regard tangent vectors (analytically) as differential operators. This will be
useful for us from a technical point of view. To a tangent vector [c] € T, M we can assign
its directional derivative

O f = dflc] = [foc = (foc)(0)

where we canoncially identify T{fo.) )R with R. The differential operator 9 has the
following properties:

1. It is R-linear:
Ig(ALf1 + Aaf2) = Mg f1 + A0 f

2. It is a derivation, i.e. it satisfies the product rule

Directional derivatives are local operatores, i.e. J|f depends only on the values of f
near p. It is therefore natural to pass to germs of functions. Let M be a €*Z!'-manifold
and p € M. We call two functions defined on neighbourhoods U; resp. Us of p equivalent,
if they agree on a neighbourhood W C U; N Uy of p. An equivalence class is called a
germ, (of a function) in p, and €*differentiable, if the functions representing it are €%
differentiable in a neighbourhood of p. We denote the germ of f in p by [f],. The set
€*(M), of €*—germs in p carries a natural structure as an R-algebra.

Definition 1.19. A derivation on M in p is an R-linear functional D: €*(M), — R
which satisfies the product rule:

D(fg) = (Df)g(p) + f(p)(Dg)

The derivations in p form an R-vector space Z,(M). It contains the tangent space, i.e.
there is the natural linear embedding

Ty M — Dp(M), v — 0, (%)
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If (U,x) are local coordinates at p, thento the tangent vector %|p is assigned the

d L _O(foa™!)
P il o o D) + ter) = == ()
which is the i—th partial derivative wrt. the coordinates x. This motivates our notation

8%1- o From now on we identify the tangent vector v with the corresponding derivation 9,,.
Let us discuss the surjectivity of (*). We denote by I, C €*(M), the maximal ideal of
the germs vanishing in p, i.e. the krenel of the evaluation map (algebra homomorphism!)
€*(M), — R. We observe that every derivation D: ¢*(M), — R vanishes on germs of
constant functions, since

derivation

D(1) = D(1)-1+1-D(1) - D(1) = D(1-1) - D(1) = D(1) ~ D(1) = 0

and as well on the idal IS (the linear combinations of products fifo for fifs € Ip),
because

D(f1f2) = D(f1) f2(p) + fi(p)D(f2) = D(f1) - 0+0-D(f2) =0  fi,f2 €I

Vice versa, every linear functional D: €’* (M), — R, which vanishes on R-IUII% C EF(M)
is a derivation:

D((c1-1+ fi)(c2 -1+ f2)) = D(cica - 1+ caf1 + e1fa + fif2)
= coD(f1) + c1D(f2)
= D(cil + fi)(ca- 14 fo)(p) + (c1l + f1)(p) - Dle2 - 1+ fo)

Hence derivations correspond to linear forms on the vector space I,/ Ig:
~ 2\ *
Dp(M) = (Ip/ 1)
Proposition 1.20. If k = co, then the embedding () is a linear isomorphism.

Proof. Let (U, k) be a chart around p with x(p) = 0 and [f] € I,. Then we obtain for x
near O:

(fom1>(x)—/01 (jt(fonl)(tx)> dt—zxi/()IW(tx)dt

=g;(z)

50 dim M dim M
= Z (riok)(giok) = [f]= Z [1; 0 K]g;(0) mod I§~
i=1 i=1

Therefore I,,/I7 is generated by the [z; o k] + I2 and (x) is also surjective by dimension
reasons. Ul

Remark. If 1 < k < oo, then dim Z,(M) = dim I,,/I} = oo, because the germs in I are
even (k + 1)-times differentiable.
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1.4.6 Submersions and Immersions

After having defined the differential, we can generalize these notions to the setting of
manifolds.
Let M™ £ N7 be a C*='map of C*-manifolds.

Definition 1.21. F is called a submersion if its differential dF), is surjective at all points
pe M.

We know (compare our discussion of submanifolds and the Inverse Function Theorem):

Proposition 1.22. The inverse images F~1(y) of values of submersions are submani-

folds.

Definition 1.23. i) F is called an immersion, if dF}, is injective for all p € M.

ii) F is called embedding, if its image F'(M) C N is a submanifold and M LF (M) is
a diffeomorphism.

immersions are locally embeddings (compare the earlier discussion of local parametriza-
tions of submanifolds)

Proposition 1.24. FEvery point p € M has an open neighbourhood U s.t. F|y is an
embedding

Proof. We thicken F locally to make it a diffeomorphism (working in a single chart).

For a sufficiently small open nbh. U of p (contained in one chart) and € > 0 exists an
e .

extension of F|y to U x (—e,e)™=™) % N s.t. (dF|u)p,0) is invertible.

According to Inverse Function theorem we can achieve by shrinking U and e, that F|y

is a diffeomorphism. then F|y is an embedding. O

injective immersions are in general no embeddings!

Proposition 1.25. An immersion is an embedding if and only if it is a homeomorphism
onto its image.

Proof. 7 <= 7: Let p € M. by the previous proposition, there exists an open neighbour-
hood U of p s.t. F(U) C N is a submanifold. By assumption, F(U) is open in F(M),
hence 30 € N open s.t. F(U) = F(M)NO.
It follows that F'(M) is a submanifold near F'(p). Thus F(M) C N is a submanifold.
Then

M—r 5 RO

homeo+imm ~——
(sub)ymanifold

is a local diffeomorphism. Since it is also a homeomorphism, it is also a global manifold.

d

Corollary 1.26. If M is compact, then every injective immersion is an embedding.
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Proof. Bijective continuous maps from compact spaces to Hausdorff spaces are homeo-
morphisms. O

We call the images of injective immersions M — N immersed submanifolds of N
(Relaxing our notion of (embedded) submanifolds.)

1.5 Vector fields, flows, Lie brackets

(everything C'™)

Definition 1.27. A (smooth) vector field on M is a smooth map X : M — T M with
mo M =idy ie. X(p) € T,M Vpe M.

Geometric intuition: In every point, a direction is chosen.
in local coordinates (U,x) the vector field can be expressed in terms of the cononical
basis:
0

X(p) = Z ai(P)afxib‘

The smoothness of X on U is equivalent to the smoothness of the coefficient functions
a;.
Analytically, we can regard vector fields as certain differential operators on functions.
To the vectorfield X corresponds the operator, also denoted by X:
X:C®(M)— C®(M)
f—Xf:p— X(p) [

——
derivation

"derivative in direction of the vector field X"
Properties:

i) R- linear
ii) product rule: X(fg) = (Xf)g+ f(Xg)

Vice versa, to an R -linear operator X satisfying the product rule corresponds a vector
field. Namely, X determines in a point p € M the derivation X(p) € T,M given by

£ 29 (X (1)) for f € C=(M).
We use:

Lemma 1.28. This operator is local, i.e. f:= 0 near p = (X f)(p) =0
Proof. —Unvollstandig———

= 0=X(ef) = (X¢) J_+ o (XP)=X[:=0

=0 :=1 near p

near p, i.p. (Xf)(p) = 0. O
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The smoothness of the vector field p — X (p) determined by the operator X can be
seen near a point p by choosing local coordinates:

- o
X(q) = Z(Xhl)(q)é)ix‘q for q near p,
=1 ?

where the h; are auxiliary functions which coincide near p with the i.th coordinate
function.

The space I'(T'M) of smooth vector fields on M is a module over the ring C°*°(M ), where
multiplication is defined pointwise:

(X)) = @(p)X(p) for p € C>(m), X € I(T'M).
In terms of derivations:
(@X)f =o(Xf), o, feC(M),X el'(TM).

An integral curve or trajectory of the vector field X is a differential curve ¢: I — M with

c=Xoc (%)

where 5
¢=[r—=ct+7)=dc[r = t+7] =de=|t € Ty M.
————— or

We rewrite () in local coordinates:

xoc=(c1,...cm); ¢(t)= ZCZ(t)@?‘C(t)
(%) becomes a system of first order ODEs:

éi=a;joc=(a;ox ) o(xoc)
\jr
= ¢i(t) = ai(c1(t), . .. cm(t)) first order smooth coefficients.
The local theory of ODEs yields that the initial value problem ¢ = X o ¢, c(tg) = po has
unique local solutions, which depend smoothly on the initial conditions.
In other words: To (pg,tp) € M x R exists an open nbh Uy of py, € > 0 and a smooth
map & : Up x (to —e;tg +€) — M

9P
S =Xod 0]

with { 9 ° , where o® = d@g.
@('7150) = idUo 8t 8t
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The local flow ®(p, ) is the integral curve with ¢y — p.
Globally one obtains: Due to the uniquenes of local solutions, there is for p € M an
unique maximal integral curve

cp:(ap) , wp) )— M
~—— ~——
E[*O0,0) G(O,+OO}

with ¢,(0) = p.

The function a: M — [—00,0) is upper semicontinuous and w: M — (0, 00] is lower
semicontinuous, i.e. for p € M and «a(p) < a < 0 < b < w(p) there exists a neighbour-
hood U of p such that ¢, is defined on an interval containing [a, b] for all ¢ € U. In other
words, the set

DX ={(p,t) e M xR |a(p) <t < w(p)}

is open in M x R. It is the natural domain of definition for the global flow
¢~ DX — M, (p,t) = c,(t)

of X. For a vector field X € I'(I'M) and p € M, there is a maximal integral curve
cp: (a(p),w(p)) — Mwith ¢,(0) = p. The set DX is open in M x R. The smoothness
of the lcoal flows implies the uniqueness of ¢*. The uniqueness of the solutions to the
ODE implies the group property of the flow ¢X:

N (p,t1 + 1) = ¢~ (¢~ (p,t1), to)
This holds whereever it is defined.

Definition 1.29. A vector field X € T'(TM) is called complete if DX = M x R. That
is, all integral curves are defined for all R.

In this case the maps ¢; = ¢~(_,t): M — M are well-defined and are diffeomor-
phisms. We have the group property

bty 4ty = Dty © Pty

So the map R — Diff(M),t — ¢; is a group homomorphism Such a homomorphism is
called a I-parameter—subgroup of diffeomorphisms.

Example. In a compact manifold all vector fields are complete.
Example.

1. If there is a 9 > 0 such that all integral curves c, of the vector field X are defined
(at least) in (—eq, &0), then X is complete.

2. If w(p) < oo, then ¢, leaves every compactum in M.
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1.5.1 The Lie bracket

Let X,Y € I'(TM) be vector fields. We think of a vector field as a derivation in order
du construct the operator:

(X, Y]: (M) = €= (M), f = X(Y ) = Y(X[)

This is a differential operator of order < 2, but because we are taking skew-symmetrization,
the second order part disappears and we actually obtain an operator of first order. We
verify that [X,Y] is again a derivation; in particular, it is a vector field.

e R-linearity is clear.

e The product rule can be seen by calculation:
(X, Y](fg9) = X(Y(fg)) = Y(X(f9))
= (XY [f)g+ (V) (Xg) + (X)(Yg) + F(XYy)

- (Y X[)g - (XN)Yg) - (Y[)(Xg) - f(YXg)
= (XYf-YX[flg+ f(XYg—-YXg) =g[X,Y]f + fIX,Y]g

Definition 1.30. Themap [, |: T(TM)xT(TM) — I'(T M) is called the Lie bracket.

We can write the Lie bracket in local coordinates: Let X = X'0;, Y = Y'9; and
[X,Y] = Z'0;, then

(X,Y] = X'0;(Y70;) — Y'0;(X70;)
= X' (0;Y7)0; + X'Y?9;0; — Y'(9,;X7)0; — Y' X! 0,0,
— XU (3,70, — Y9 X7);

SO

, oYJ 0X
] — 7 )
z zz: (X Bxl - 8%1 )

Remark. Our definition of the Lie bracket only works for > vector fields, since we are
considering vector fields as derivations. We can take the description in local coordinates
as a definition of the Lie bracket for €*Z! vector fields. It is well defined and independent
of the local coordinate chart that we chose because this is true in the > case. The
formula also shows that the Lie bracket of two €* vector fields (i.e. X' Y’ are €*
functions) is a €*~1 vector field.

Proposition 1.31 (Algebraic properties of the Lie bracket). The Lie bracket
1. is R-linear.
2. is skew-symmetric: [X,Y] = —[Y, X].
3. fulfills the Jacobi identity:
[1X,Y], 2] + 12, X], Y] + [[Y, 2}, X] = 0
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Proof. R-linearity and skew—symmetry are clear. To prove the Jacobi identity, observe
that

[X,Y],Z|f = [X,Y]Zf - Z|X,Y)|f = XYZf —YXZf - ZXYf+ ZYX¥
V.2, X)f =Y, 2| Xf - X[V, Z|f =YZXf - ZYXf - XYZf+XZY |
2, X],Yf =2, X]Yf-Y|Z,X|f = ZXYf—XZYf-YZXf+YXZf

sums up to 0. O

Definition 1.32. An R-vector space V together with a multiplication [_, |: V xV —
V with the properties 1-3 is called a Lie algebra over R.

The geometric meaning of the Lie bracket will become clear after we discuss the notion

of a Lie derivative in the next section.
If g, € €°°(M), then [pX,¥Y] = [ X, Y]+ p(XY)Y — (V) X.

1.5.2 The Lie derivative of vector fields

We cannot define a directional derivative 0,Y of a vector field Y € I'(T'M) in the
direction of a vector v € T, M without some additional structure (a connection, this will
be defined later) because the vectors Y (q) € T, M live in different tanget spaces.

But with a flow ¢~ of a vector field X € I'(T'M) we are able to idetify the tangent
spaces along a trajectory of the the flow and in this way to derivate a vector field Y in
the direction of the flow of X.

Let X,Y € T'(T'M). We define the derivative of Y in the direction of X, called Lie
derivative, by:

d
LY (p) = | do%(Y 00 (@) € T,M
t=

The fact that this is smooth can be seen e.g. in local coordinates. Therefore the vetor
field LxY is smooth, i.e. LxY € I'(T'M).

Proposition 1.33. LxY = [X,Y].

Lemma 1.34. If X(p) # 0, then we can find local coordinates near p € M such that
X =0.

Proof. We choose a smooth map q: Bas(0) C R*™! — M such that ¢(0) = p. It has an
injective differential dgp at 0 and X (p) € Im(dgp). For £ > 0 small enough we consider
the smooth function

H: (—e,¢) x Bs(0) = M, (T1,...,xp) — qﬁX(q(azg,...,a:n),xl)

and see that dHy is invertible (dHy = (X (p), dgo)). Hence H is a local diffeomorphism,
i.e. for €, > 0 small enough H is a diffeomorphism into an open neighbourhood of p.
The inverse H~! is a local chart with the desired property. ]
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Proof of proposition. We have to show that LxY (p) = [X,Y](p) for every p € M. First
assume X (p) # 0. We work in local coordinates. By the lemma we can assume X = 0;.
Let ¢v: M D U — R" be a corresponding coordinate chart. We identify U with its image
¥ (U) and work in ¢(U) to simplify the notation. We have ¢;X (z) = z + te1, so d¢;X =
idgn. From Y o ¢X () = Y (x + tep) it follows that d¢™,(Y o ¢ff (z)) = Y (x +ter) € R™.
Write Y in local coordinates, Y =3 Yjaj\p, then

0
Ox;

0XJ 0 -0
I X —
Z 8951 al’] [8951’%: aTj] (p)

which is [X,Y](p), so LxY (p) = [X,Y](p). Now let X (p) = 0. Consider the set

d )
LxY(p) = -, > X (z+ter)
t=0 ;4

B={qe M| X(q) #0} C M.

We have shown that LxY (q) = [X,Y](q) for all ¢ € B. By continuity it also hold in B.
It remains to show the proposition for the case X = 0 in a neighbourhood of p. In this
case the equality LxY (p) = 0 = [X,Y](p) is trivial. O

Another geometric interpretation of the Lie bracket is that it measures the noncom-
mutativity of flows:

Proposition 1.35. For vector fields X,Y € I'(T'M) the following assertions are equiv-
alent:

1. [X,Y]=0.

2. ¢% and ¥ commute for small times in the following sense: Forp € M there exists
an open neighbourhood U of p and &€ > 0 such that ¢ ¢pY = ¢Y ¢ in U for all
s, t € [—¢,¢].

Remark. If X,Y are complete vector fields and the flows commute for small times, then
they commute ¢X ¢} = ¢} ¢X for all s,t € R.

Proof of proposition. So show ‘=’ let ¢ € U C M and tg € (—e,e). Then we have

d
5| RV 06 (a) = doZ, dhh0d¢¥h(Yo¢§<¢§§<q>>>

dt |y,
= d¢)—(t0LXY(¢to(q)) =0

Hence d¢*,(Y o ¢X(q)) = Y(q) for all t € (—¢,&). We claim that ¢;* sends trajectories
of Y in trajectories of Y. This holds since ¢;X o c};(O) = ¢ (q) and

(07 0cg )*(s) = doft (¢ (s)) = doi (Y(ey () = Y (7 (cg (5)) = Y (97" 0¢y (5))
, 50 ¢ff o c}; = CZX(q) is a trajectory of Y through ¢} (¢q). That is

O 0 0y () = cyx g (s) = 8y © &} (q)-
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Conversely, if for (p, s,t) in a neighbourhood of (g,0,0) € M x R x R holds ¢} o ¢;X(p) =
#X o #Y (p), then gb)ft(c(z)g((p)(s)) = ¢Y(p) = ¢} (s) and derivation with respect to s at
s =0 gives

deX,(Y 0 97 (p)) = Y (p)
which again derived wrt. ¢ at ¢t = 0 yields

[X,Y](p) = LxY(p) = 0. O

1.6 Distributions and foliations
1.6.1 Foliations

An immersed submanifold of a manifold M is the image of an injective immersion ¢: N —
M of a manifold N. It relaxes the notions of an (embedded) submanifold. Recall: ¢(V)
is an embedded submanifold if and only if ¢ is a homeomorphism into its image.

Definition 1.36. A k—dimensional foliation of a manifold M™ is a partition of M in
disjoint k—dimensional submanifolds (called the leaves of the foliation). This partition is
locally trivial in the following sense: At every point x € M there is a local chart of the
form k: U — D¥ x D™ % where D* is a k—dimensional disk, such that the intersection

of each leaf with U is a (necessarily countable) union of ‘layers’ of the form x~*(D* x pt).

In other words: The partition must be locally equivalent (via local diffeomorphism)
to the model foliation of R™ = R¥ x R™* by the leaves R* x pt.

One can regard foliations as geometric structures on manifolds givenby atlases with
certain restrictions on the coordinate changes: A k—dimensional foliation on M (with
connected leaves) corresponds to a maximal subatlas of the differentiable structure whose
coordinate changes are of the form

RF x R™* 5 (2,9) = (f(2,v),9(y))

Starting from such an atlas, one recovers the (connected) leaves as equivalence classes
of ‘horizontally connectable’ points: z ~ y if and only if there exists a curve ¢ from z to

y such that wrt. the foliation charts x the R™*-component of x o ¢ is locally constant.

Equivalently, one can recover the leaves as path components of the finer topology on

M generated by the subsets 1 (U x pt) with U C D¥ open. (‘transverse discretization’).

Example.
0. Products M = M7 x My is a foliation by the leaves M7 X pt.

1. Submersions f: M™ — N™. The level sets f~!(pt) form an (m — n)-dimensional
foliation of M as a consequence of the implicit function theorem. The leaves are
embedded submanifolds.

2. Let X be a vector field on M without zeros. The (traces of the) trajectories form
a 1-dimensional foliation. The leaves are in general not embedded.
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Definition 1.37. A foliation is called a fiber bundle if

1. All leaves (also called fibers) are diffeomorphic to a fixed manifold (‘model fiber’)
F,

2. The foliation is locally trivial in transverse direction: Every leaf has a saturated
(i.e. a union of leaves) open neighbourhood U on which the foliation is a product
foliation, i.e. there exist bundle charts kU™ — F* x S™F such that the subsets
k~L(F x pt) are leaves.

The space of leaves B carries a natural strcuture as a smooth manifold such that
the natural projection 7: M — B becomes a submersion. (In particular, B carries the
quotient topology wrt. 7). Namely, the bundle charts x induce charts &: 7(U) — S and
the coordinate changes & o %! are defined on open subsets and are smooth. B is clearly
Hausdorff and therefore a smooth manifold.

We call F the fiber, M the total space and B the base space and write the fiber bundle
like this:

F— M
}r
B

Example.
0. The product foliation 7w: F' x B — B is a fiber bundle.

1. The tangent bundle w: TM — M of an m—dimensional manifold M is a bun-
dle with fiber R™. Here, the fiber also carries an algebraic structure as an m-—

dimensional R-vector spaces, varying smoothly. So the tangent bundle is a vector
bundle.

2. The Hopf fibration is the fiber bundle

CoHSt—— 8§l ccn
(CPn_l

The fibers are the trajectories of the vector field z — iz. We have the following
bundle charts:

Zi z Z z
U={ze 8|2 #0} -8 xC! z%(1”>
|zi|” 2 2 2

1.6.2 Distributions

Definition 1.38. A k—dimensional distribution on a manifold M is a family D =
(Dp)pem of k-dimensional vector subspaces D, C T,M which depend smoothly on p
in the sense: For every p € M exist smooth vector field X1, ..., Xj near p such that

D, = span{Xi(z),..., Xi(x)}
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In later terminology, distributions are smooth vector subbundles of the tangent bundle
TM. 1-dimensional distributions are called line fields and are locally generated by
nonvanishing vector fields, D, = RX(p) locally.

Example.

1. Distributions tangent to foliations

2. Let us fix a scalar product on R™. A distribution D = (D,),cpy on an open subset
U C R™ determines the orthogonal complementary distributions D+ = (DpL)peU
on U, e.g. if X is a nonvanishing vector field, then span{X(p)}* is a hyperplane
field or if f is a function without critical points, then R(grad f) is a line field. The
standard contact structure on S?"~1is z ++ (Cz)*, which is orthogonal to the Hopf
fibration.

Definition 1.39. An immersed submanifold, more generally an immersion ¢: N & M
is tangential to the distribution D, if

dL(TxN) C Db(z) C TL(x)M

for all z € N. It is called an integral manifold if it has maximal dimension k, i.e.

Definition 1.40. A distribution D is called (completely) integrable, if there exist integral
manifolds through all points. It is called partially integrable if there are everywhere
tangential submanifold of dimension > 2.

Remark. Line fields are always integrable.

Definition 1.41. The distribution D = (Dp)penr is (completely) integrable, if there
exist (locally) integrable submanifolds through all points.

we observe: If X is a (locally) defined vector field tangent to the distribution D, then
the flow ® of X preserves integral submanifolds N of the distribution (locally for small
times), since X is tangent to N and & restricts to a flow on N. Infinitesimally, this means:
For any two vector fields X and Y tangent to D, the Lie derivative LxY = [X, Y] must
again be tangent to any integral submanifold, because it can be computed intrinsically,
i.e. along any integral submanifold of D. This yields an obstruction to integrability of
distributions of dim > 2:

Definition 1.42. D is called involutive, if XY tangent to D = [X,Y] tangent to D.

Hence: integrable = involutive.
distributions are in general not integrable:
Example: "propeller": We regard a time dependent distribution D on M as a distribu-
tion on M x R:

A

D(p,t) := Dylt) @R C T,M & TR = T(y, (M x R)

Then D is integrable and involutive if and only if D(t) is stationary (= time independent)
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Theorem 1.43. (Frobenius:) involutive = tangent to a foliation (= (completely) inte-
grable [leaves are integrable submanifolds])

Proof. Let X1,..., X} bealocal basis for D (i.e. locally defined vector fields s.t. {X;(p)})
is a casis of Dy,
Involutivity implies that along Xi-trajectories we habe an ODE

k
LXlXj = ZCLZ‘]‘XZ‘,
i=1
where a;; are components of a k x k matrix A that depends smoothly on the point. In
matrix notation, this gives
L =
x X XA ()
(X1, Xp)
We choose a (piece of) hypersurface (= codim-1 submf.) S transversal to X; and solve

locally the auxiliary ODE:
8X1B +AB =0

for k x k-matrix valued functions B along X-trajectories with initial condition B|g = id.
Then:

LXl( XB ):(Lxl,X)B—i—X(aXlB):O
~ —— ——
Zi Xibi1, Y Xibig XA —AB

This means that the flow of X7 preserves the distribution D.
( Variant with A-product:

LXl(Xl/\"‘/\XL) = (LXle)/\XQ/\"'/\Xk+"'+X1/\XQ/\"'/\ Lx, Xy,
—_——— ——
Zi a;1 X4 Zz a;pX;
=trA- X7 A Xo A A X
= ANTMDOR-X; A--- A X, stationary along X;-flow)
In suitable local coordinates we have X; = 8%1 and S = {X; = 0}, and D does not
depent on X (“propeller stands still”).
This implies: D is locally integrable if and only if the induced involutive distribution
(DpNT,S)pes on S is locally integrable. This reduces the problem by one dimension (i.e.
Froby < Froby_1). The assertion follows by induction on k from the trivial one-dim
case (note: also the 1-dim involutivity condition is trivial, Lx X = [X, X] = 0). O

“classical” coordinate version of Frobenius: U C R™, V' C R" open. Local solutions:
U D Uy = V of the total differential equation

doy = b(z, a(x))

for given U x V' LN Hom (R, R™) correspond to integral submanifolds of the distribution
(x,y) — graph b(xz,y) on U x V. The distribution is spanned by the vector fields
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% +> bija%i’ and its involutivity corresponds to the integrability condition for b:

Oby 6bk] < Obyy 3%) » ‘
o T A bij—— —b; = kgl (E !
(8xj ox; + zl m l e 0 Vk,j (Exercise!)

Special case: One can locally find a (R-valued) function d with prescribed differential

da=p (= ZﬁidXi)
if and only if the integrability holds:

9B 9B; .
ok 95 _ I
dxj O 0 v,

The computation
Lx,(f;X;) = (Xif))X; +fiLx, X;
—_———
cont. in D
Shows for vector fields X and Y tangent to D : (LxY)(p) mod D, depends only on
X (p) and Y (p). As obstruction to involutivity and hence integrability of D, we therefore
obtain the family of skew-symmetric bilinear maps:
Dy x Dy — TpyM/p,
(X(p), Y (p)) — [X,Y](p) mod D,

(tensor: vector valued 2 form on the distribution D).

1.7 The cotangent bundle and 1-forms
1.7.1 The cotangent bundle

By fiberwise linear algebra constructions new vector bundles arise from given ones. The
construction of the dual vectorspace starting from the tangent bundle 77T M — M yields
the cotangent bundle.
M= ][] TM "= M
pEM

The total differential of a function f € €'(M) in a point p € M is a cotangent vector:

dfp defined by df,(v) = 0, f for any v € T, M. The differential df), is an element of the
cotangent space Ty M.

The natural structure on 7*M as a smooth manifold is (as in the case of the vector
bundle T'M) induced by the smooth structure on M. If (U, z) is a chart for M around
p, then the differentials (dz;), of the coordinate functions form a basis of Ty M which
is dual to the basis {0;|,} of T, M, because

_O(fozh) Oz

dfp(9:) = Tj(ﬂﬁ(!))) = (dzi)p(9) = oz, (x(p)) = 9
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The induced chart for T*M is

T'z: T*U = H T,M — z(U) x RAMM — R2AmM = (), v (2(p), X, aier)
peU

The change of basis wrt. a coordinate change is given by
ox; _\ ,—

dxi = Z <6§2§ OJ}) da:j

J
The induced coordinate change on T*M is then given by
- 0x; ,_
(r,0) > 700, Y (a5 (@) ) e
4,3 J

As before in the case of T M, we conclude that T* M is a €°*° manifold and 7 is smooth.

1.7.2 1-forms

Definition 1.44. A smooth differential form of degree 1 (also 1-form or Pfaffian form)
on M is a smooth section of w: T*M — M, i.e. a smooth map a: M — T*M with
moa =idy, e a, € Ty M.

Example. Let f € €°°(M). The total differential df: p — df, is a smooth 1-form.

In local coordinates, we write 1-forms as
ay = Z a; dz;
i

The smoothness of a «|y amounts to the smoothness of the coefficients a;. For instance,

o -1
dfly =" (a(faf) as) da;

7

The duality of tangent and cotangent vecotrs corresponds to a duality of vector fields
and 1-forms: The space Q!(M) of smooth 1-foms on M is a €°°(M )-module:

(fa)y=fp)ap, [feC(M),ac Ql(M)
There is the natural ¢°°(M )-bilinear pairing
QY M) xT(TM) = € (M), (o, X)+— a(X)

where a(X), = a,(X,). The smoothness of a(X) becomes clear in local coordinates:

(Z @ dxi) (%: bjaij) = ah
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This pairing is non—degenerate, i.e. the canonical map
Q' (M) — Homgeo (1) (D(TM), €°(M)),  a (X = (X))

is bijective. Hence we can interpret 1-forms as ¢°°(M)-linear operators on vector fields
and vice versa.
One can pull back 1-forms with €°°—maps maps F': M — N:

dFy: TyM — Tpp N~ dFy: T;i(p)N — T, M, X Ao dF,
Pointwise application of this process to a 1-form yields:
F*: QY (N) = QY (M), ar (p— ao dF))
The map F* is called the pull-back. For vector fields X € I'(T'M) the following holds:
(F*a)(X) = a(dF(X))

The right hand side is always smooth, and we see that F*« is a smooth section of T M.

Remark. There is no well-defined push—forward for vector fields.

1.7.3 The line integral

Let w = ¢(t) dt be a piecewise continuous 1-form on an interval [a, b], i.e. g is a piecewise
smooth function on [a,b]. One can integrate w over the (oriented) interval by defining

b
/ w ::/ g(t)dt
[a,b] a

Lemma 1.45 (Diffeomorphism invariance). For an orientation preserving diffeomor-
phism ¢: [a,b] — [a,b] holds

CYfw = w
[a,b] [a,b]

and the sign changes for an orientation reversing diffeomorphism.
Proof.

* 5 * a ~ b 8 ~
/[&75}90 w—/& (p*w) (85\7,5) dt—/a w (dtpaff) df

5[ﬂwm¢®ﬁ=iGZ®&=i[mw 0

The line integral of a (continuous) 1-form a on M over a (piecewise €') curve

c: [a,b] — M is defined as
b
/a::/ c*az/ a(e(t)) dt
c (a,b] a
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As a consequence of the lemma, the line integral is invariant under reparametrisation:

/ a:/~(cocp)*a::t c*a:i/a
cop [a,b] [a,b] c

Thus, we can integrate 1-forms over unparametrized oriented curves, e.g. oriented 1-
submanifolds with no additional structure.

Example. Define the following 1-form on R? \ {0}

—ydr +zdy
o= -
z2 + y?

and consider the curve ¢(t) = (cost,sint) on [0, 27]. Then

1o}
+ cost—

¢(t) = —sin t2
c(t) oy

ox

c(t)

and thus a(é(t)) = sin?t + cos?t = 1, so
27
/a = / dt =27
c 0

Definition 1.46. A 1-form « is called exact if it is the total differential of a function

f: a=df.

The ”fundamental theorem of calculus” yields for the line integral of exact forms:
"fundamental thm. for the line integrals:”
For f € CY(M) and [a, b] ;Cﬁ M holds:
p.w.

06.12.2012

/C df = f150) (= F(c(b)) = f(c(a)))

because:
b

b

[a=[ ¢ = [oowa=(eol

c ~~—
@ d(foc)=(foc) (t)dt @

In this case, the line integral is independent of the path (curve) (rel endpoints) i.e. its

value depends only on the position of the endpoints.

Proposition 1.47. The line integral of o € Q' (M) is path independent (rel. endpoints)
if and only if « is exact.

Proof. 7 = ” w.lo.g. let M be connected. Then any two points are connected by
a piecewise Cl-curve. We choose a basepoint p and obtain a well-defined function f
("potential”) by putting
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where ¢, is an arbitrary piecewise C'-curve from p to x. To see that f is C! with df = «,
we compute (in loc coordinates:)

1 1
ﬂx+m:f@g+/aﬁm@mn:ﬂ@+aﬁm+/’ (e — aa)(v)  dt
0 0

=o(||v]|); —0 uniformly as v—0
= df, = ay O

Remark on physics (mechanics):
R? > U (open) L R3 force field ~ o = (F,#) (standard SCP on R®); [a,b] = U path.
~ work which the force field does along the path equals

b

IV:jm@ﬁ:/a@ﬁzla

a

F conservative < no work along closed paths: “conservation of mechanical energy” for
all closed curves c:
/ a=20
(&

< d potential U : « = —dU, resp. F' = —grad U
work along arbitrary ¢ : [, = U(c(a)) — U(c(b))
infinitesimally: w = «(¢) = —U (decrease of potential)
Example: gravitational field, electric field: a = —ﬁ—; = d% =U= —%
If ¢ satisfies the equation of motion (¢, ¢) = «
= - EpOt =W = Oé(C) = <Cv C> = §<C, C> = Ekin
Epot + Epin =0 conservation of pot + kin energy

Criteria of exactness of a 1-form « € Q'(M), i.e. for the solvability of the PDE
df =a (%)
in local coordinates:

of
8:131' N

;.

Solutions of (*) can be interpreted as integral manifolds of a codim-1 distribution on M x
R (compare the earlier discussion of the "classical” Frobenius thm.), namely D(p,t) =
graph a;, module the identification T{p,t)(M x R) = T, M @© R. The local solvability of
() is according to the Frobenius Thm. equivalent to the involutivity of D = (D)),
which corresponds to an integrability condition for a.
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We word out the obstruction for involutivity in this case:
Vector fields X on M yield vector fields tangent to D by

0
(1.1) —X(p) + (X)) o |
short: X +a(X)E where X is the horizontal lift.

We compute the Lie brackets of these vector fields mod D.

(X +a(X)E,Y +a(Y)E] = [X,Y]+ (X(a(Y)) - Y(a(X)))E,

V]
because E commutes with X and Y. With [X,Y] = [X,Y] = —a([X,Y])E mod D it
follows:
Lhs = (X(a(Y)) =Y (a(X)) — o([X,Y])) E mod D

=da(X,Y)

As remarked in our discussion of Frobenius, the obstruction [U,V]mod D for vector
fields U and V tangent to D is of 0. order in U and V, i.e. its value is a skew-symmetric
bilinear form in U(p) and V (p). Hence the well-defined smooth family do = ((da),)
of skew-symmetric bilinear forms dco, on T),M given by

(da)p(X(p), Y (p)) = da(X,Y)(p)

is the complete obstruction to local exactness of . (this is one motivation for introducing
higher degree differential forms and the exterior derivative — later)

peEM

Definition 1.48. o € /(M) is called closed, if do = 0.

Thus: locally exact < closed (for 1-forms)
In local coordinates:

. 6 0 _ aOéj 80@

Here, the local integrability conditions for g—{i = qy are

80éj 3041' ..
_ - v
8952- 8:1;j 0 bJ
Integrability condition for a force field F to be locally conservative:
OF; OF; _ 0
8%‘2‘ 8$j N

Remark:
One can represent da as a measure for local nonexactness of o geometrically also as
follows:

1
(dov)p(u,v) %51(1) t2/a Exercise!
Tt
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Te obstructions to the global solvability of () for closed 1-forms « are of topologlical
nature. This results from
Homotopy invariance of the line integral of closed 1-forms:

[0, 1] [a, b] ENSVE (s,t) — cs(t) homotopy with fixed end points co(a) := const, c(b) :=
const
da=0=s5— / o const proof: Exercise (use local potential)
Cs
Whether the line integral of closed forms is path independent is related to the possibility
of deforming (homotoping) paths into each other (fixing endpoints). In case of simple
topology: closed = exact (no global obstruction).

Whether the line integral of closed 1-forms is path independent is related to the
possibility of deforming paths in M into each other. This is related to the fundamental
group w1 (M). Precisely, if all closed paths in M are nullhomotopic (i.e. homotopic
relative to their endpoints to the constant path), then the line integral of closed 1-forms
is path independent, and closed 1-forms are therefore exact. Short: If m (M) = 0, then
H'(M) =0, where H' is the first de-Rham cohomology group.

Thus, if M has sufficiently simple topology, then there are no global obstructions to
exactness.

Example (Poincaré-Lemma for 1-forms). For U C R"™ open star—shaped the following
holds: If a € QY(U) is closed, then it is exact.

Example. Consider polar coordinates on R? \ {0}. The 1-form df c Q'(R? < {0}) is
well-defined and closed, hence locally exact. But it is not globally exact since for the
circle v around the origin, we have

/d9:27r7§0
.

1.8 Digression into multilinear algebra
1.8.1 Tensor product of vector spaces

We work with vector spaces and algebras over a fixed but arbitrary field K (while thinking
of K as being R or C). We define the tensor product of vector spaces by a universal

property:

Definition 1.49. A tensor product of two vector spaces U and V is a vector space UQV
together with a bilinear map

:UxV->URV, (uv)—u®uv

which has the following universal property:

UxV-2y

2
e
o|
U7 3

UV
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For any bilinear map g: U x V — W there exists a unique linear map \: U® V — W
with = Ao ®.
In other words, the natural homomorphism of vector spaces

Hom(U @ V,WW) — Bil(U,V; W), A= Ao®
is an isomorphism.

Theorem 1.50. For any vector spaces U,V the tensor product ®: UXxV — UV exists

and is unique up to natural isomorphism. We can therefore speak of the tensor product
of U and V.

Proof. The uniqueness follows from the universal property: It yields linear maps A and
A with

AMu®v)=u®wv Mu®v)=u®v = QoA)ue®v)=u®wv

UV
e
UxV A
Y uev
Both idygy and X o\ solve the mapping problem

UxV 25UV

12

UV 2

and uniqueness of its solution implies Ao\ = idygy. Analogously, A o A= idU@/. This
shows that there are natural isomorphisms between and two tensor products of U and
V.

For existence, we first consider a vector space E with basis U x V, i.e. E consists of
all finite linera combinations Y; a;(u;, v;) with w; € U, v; € V and a; € K. In order
to make the canonical map U x V' — F bilinear, we devide out corresponding relations:
Let R C E be the vector subspace spanned by the elements

(u1,v) + (u2,v) — (u1 + uz,v) Vur,up e U, veEV
(u,v1) + (u,v2) — (u, vy + va) YueU, vi,v9eV
(au,v) — a(u,v) VueU veV, ae K
)

U, v
U, v VuelU, veV, ae K

(

!
(u, av) — «
Then the composition

UxV—FE—»FE/R=U®V
—_—
®

39



because, for instance u; ® v + uz @ v — (u1 + u2) ® v = 0. It satisfies the required
unlversal property: Given a bilinear map : U x V' — W, there exists a unique linear
map X E— W with Aot = B. The bilinearity of 5 is equivalent to )\(R) = 0, because
e.g.

X((au,v) —a(u,v)) = M(au,v)) — ar((u,v)) = B(au,v) — af(u,v) =0

E A 117

N

UxV

o]

E/R=U®V

Therefore A descends to a linear map A: U ® V — W which satisfies as desired:
Mu@v) =A(u,v) = Bu,0) = B=Xro®

This determines the map A uniquely, because by our construction the u ® v generate the
vector space U ® V. O

The following result gives a more concrete idea of the tensor product.

Lemma 1.51. If {e; | i € I} is a basis of U and {f; | i € J} is a basis of V, then
{e; @ f; | (4,5) € I x J} is a basis of U ®@ V. In particular, in the case of finite
dimensions, we get

dimU ®V =dimU -dimV

Proof. From the construction of the tensor product in the preceding proof we know that
the elements u ® v generate U ® V. They are linear combinations of the e; ® f; because
of the bilinearity of the tensor product:

(Zaiei) ® (szfz) = Zaibj e ® fj
v d 1,7

To verify their linear independence, we construct (using the universal property) linear
forms ‘seperating’ them, i.e. taking independent values on them. The bilinear form
(where €* and f* denote the dual basis elements, i.e. ej(e;) = dir, f;'(fj) = 6j)

UxV =K, (u,v)—ep(u)-fi'(v)
induces the linear form
UV =K, u®uve—eg(u) fif(v) e® fj— dindj.
For a linear relation

Zeij€i®fj=0

1,J
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where e;; = 0 for almost all (¢, j) follows by applying the above linear form, that

0= ZCU == 5ik5jl = Ckl \V/k‘,l

i?j

Thus, the e; ® f; form a basis. O

Remark: To construct the tensor product of vector spaces, one can also proceed
more directly and, after choosing bases {e;} of U and {f;} of V, construct U ® V' as
the vector space consisting of the symbols e; ® f; and define the natural bilinear map

UxV 33UV by
O aied) @ (O_bifj) = aib; e ® fj.
i J .3

The universal property can easily be verified (Exercise).

The universal proberty implies the base independence for our second construction of the
tensor product.

the abstract construction is more general. One can in the same way construct the tensor
product ®pg of mudules over a fixed ring R (e.g. R = Z: abelian groups) also if the
modules are not free, e.g. have torsion.

Change of bases:

= ér®fs = Zgrjfsj ei®fj
i’j

& =>9grie;inU
- 1
fs :Zhsj fj inV }
J
(& = giei, fo=hifs, & @ fo=gihl e @ fj)
Example: For vector spaces U and V , the bilinear map

U* x V —s Hom(U, V)
(u*,v) — (u — u*(u) - v)

induces a natural homomorphism (Ex: injective!)
U*®V — Hom(U,V) (%)
(the image constists of homomorphisms U — V' with finite-dim image)

U* x V ——— Hom(U, V)

o
® -7

Uro Vv

If dimU, dimV < oo, then it is an isomorphism. Namely, if {e;} is a basis of U and {e}}
the dual basis of U*, then for arbitrary elements v; € V' the element » ef ® v; e U* @V
i
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corresponds to the homomophism U — V mapping e; — v;.
Hence () is surjective and therefore an isomorphism by dimesion reasons.
If {f;} is a basis for V, then

Zaﬁfj 6? &® fj aj; € K

Iy
corresponds to the homomorphism U — V which is given relative to the chosen basis by
the matrix (aj;);; because it maps e; — > aj; fj (¢+— i-th column).

J
In particular, the natural homomorphism U* ® U — End(U) is an isomorphism if
dimU < co. (Note that then }°e; @ e; corresponds to idy.)

7
Analogously to the twofold one defines and constructs the multiple tensor product U ®
-+ ® U,. It satisfies the universal property.

Itilin.
Up X ... Uy —20000_ yy

® multilin. ~_ ~ -
_ ~3llin (unique)

Ui ®..0U,

Lemma 1.52. (Associativity:) For vector spaces Uy, ..., Uptm (n,m > 1) there exists
an unique isomophism of vector spaces with

U@ - ®Up)® (Unt1®- @Upim) — U1 @ @ Upnim
(11 @ @up) ® (Up1 @+ ® Unm) —> UL @+ @ Uptm

Proof. The multilinear map

Up o X Upgm — (U1 @+ @ Up) @ (Un11® ++ @ Upm)
u1><-~-xun+m—>(u1®-~'®Un>®(un+1®”'®“”+m)

induces the homomorphism

U1 @Upim — (U1 @ QUy,) @ (Unt1 ® - @ Upym)
UL R @ Upgm — (U Q- R Up) @ (Upt1 @ - -+ @ Upgn) (*)
To see that it is an isomorphism, one can choose bases and observe that (x) sends the

induced basis bijectively to the induced basis. (Alternatively, one can use the universal
property also to construct an inverse map). ]

Permutation of factors: For vector spaces Uy, ...U, and a permutation o € S, there
is the natural isomorphism of vector spaces:

U1®“‘®Un—>Ua(1)®"‘®Ua(n)
UL Q- @ Up — Ug(1) &+ & Ug(n)
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Functoriality: Homomorphisms of vector spaces Ui a1, i,...,Up, 2ny v, induce the
natural homomorphism

U190 @U, 22 i@ 9V,

U@ @ty —> o1 (ur) @+ ® an(un)

Tensor algebra: We denote by T, (U) := @™ U :=U ® - - - ® U the m-fold tensor product
—_———

m

of U with itself, m € Ny.
Convention: Tp(U) := K. Of course, T1(U) = U. We consider the graded vector space

T.(U) = é T,.(U).
m=0

There are natural bilinear maps (by associativity)
T (U) x Tn(U) % Trn4n(U)
(UL @ @ U, V1 @ D V) —> U @ -+ @ Uy

i.e. ® defines (after bilinear extension) a product
T.(U) x T.(U) % T.(U)

T, (U) becomes a graded associative K-algebra with unit element, the covariant tensor algebra.
Covariant, because the functor U — T4 (U) from vector spaces to algebras is covari-
ant, i.e. a homomorphism of vector spaces U — V induces an algebra homomorphism
T.(U) — T\(V) in the same direction. Also the tensor algebra can be characterized by

a universal property:

T,.(U) is the “largest associative K-algebra with 1 generated by U”, i.e. for every ho-
momorphism of vector spaces U < A into an associative K-algebra with 1 exists an
unique extension to an algebra homomorphism T, (U) — A. It satisfies u1 ® - - - @ u,, —

a(uy) « ... - aluy).

a
A
JU: V-sp. hornorn./ _

—
~

4 I"alg. homom.

T(U) C T.(U)

The covariant tensor algebra of U is defined as

T*(U) :=T(U") (monomials of degree n ujf ® -+ @ u,” € T"(U))

A homomorphism of vector spaces U — V induces a homomorphism of vector spaces
V* — U* in the opposite direction (pull-back of linear forms) and hence an algebra
homomorphism T*(U) — T'(U*).
We will need mixed tensors which contain co- and contravariant components. We there-
fore consider

w’U)=U® - - UU*"®---@U" r,s € Ny

r S
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with the convention T3 (U) := K, and put

TU) = P T:(U).

r,s=0

Again, the natural bilinear maps
T3HU) x T2 (U) — T332 (U)

(M@ Qupy QU@ QU ®...) = UR QR QU QU V...

define a product and make T'(U) a bigraded associated K-algebra with 1, the tensor algebra
of U. We habe natural inclusions T, (U) C T(U),T*(U) C T(U). Elements in T'(U) are
called tensors, elements in 77 (U ) are called tensors of type (r,s), e.g. vectors (1,0), linear
forms (0,1) , endomorphisms (1,1), scalar products (0,2).

Trace and contraction: From now on, let our “initial” vector spaces U ... be finite di-
mensional. Then the natural inclusion U < U** is an isomorphism and induces natural
isomorphisms

U =T,U), TWU")=T).
The natural bilinear pairing
UxU"— K, (u,u*)— u*(u)
induces the linear form
THU)=U ®U* 2 End(U) % K
Indeed, if {e;} is a basis of U and {e}} the dual basis of U*, then the endomorphism
A =3 aije; ®e; given by the matrix (a;;) is mapped to 3 a;;0; = > ai; = tr(A).
(2] S—— ,J i

—055
Y 18.12.2012

More generally one can pair the i—th covariant component of a homogeneous tensor
of type > (i,7) with the j—th contravariant component and thus obtain the contraction
homomorphisms

T U) = TN U)
given by
W @u OUf @ @uE U () W R RTGRRU QU R DU R DUl
A natural non—degenerate pairing
TS(U) x TN(U) — K

can be obtained e.g. as the composition

T3 (U) x TI(U) — T3 (U) © TH(U) = T (U) = K,
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which is
(M@ QU QUi @ Qu, v ® DV QU] ® |—>HH1} (u;)u
i=1j=1
The bases of T)?(U) and T (U) induced by a basis of U are wrt. this pairing dual to
each other. The pairing induces a natural isomorphism:

(TZU))" =TU) =T(U7)

In particular, we can interprete homogeneous contravariant tensors as multilinear forms
and vice versa.

Multy(U) = (T2(U))* = T5(U) = T2(U*)

To the (0, s)-tensor u} ® - -+ ® u’ corresponds the multilinear form

S
(ut, - us) = Y u ()
=1

If {e;} is a basis of U, then

{ei, @ ®e; |1 <idg,...,is <dimU}

~

is a basis of Mults = 75 (U). A multilinear form p € Mults(U) can be represented wrt.
this basis as

Z p€iys ... 6,)e; ®---®e;~:

01 yeeesl

1.8.2 Exterior product

Suppose now that char K’ = 0. (This is satisfied for K = R,C). Let I C T (U) be the
ideal generated by all tensors u ® uw for w € U. It consists of linear combinations of
elements of the form:

V1R RUpQURUOUW Q-+ Quwp (%)

The ideal is graded,
[= @ UNTa(U))

m2>0

and its homogeneous part of degree m consists of linear combinations of monomials (x)
of degree m.
The grading descends to a grading of the quotient algebra

AU) = /INEBT

—Am

where A(U) is called the ezterior algebra (or Graffimann algebra) and A,,(U) the m—fold
exterior power of U. The identities Ag(U) = K and A1(U) = U hold due to Iy = 0
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and I;(U) = 0. The product induced on A(U) by ® is called ezterior product or wedge
product. 1t is denoted by A.
By construction we have the relation u Au = 0 for all v € U. This amounts to the
anticommutativity
us AUl = —ui A us Yuq,ug € U

respectively more generally:
Ug(1) N+ AN Ug(m) =sgn(o)ug A+ Aupy, Vu; € U, 0 € Sipy

So
bAa=(—D)Manb  Vae A(U),be AL(U)

The universal property of the tensor product yields the universal product of the exterior
powers: The exterior power translates alternating multilinear maps into linear maps.
Equivalently the natrual homomorphism of vector spaces

Hom (A, (U), W) — Mult2® (U, W)
is an isomorphism. In particular (W = K) we have
Mult?®(U7) := Mult?™(U, K) = (A, (U))*.

We have the natural embedding (which is well-defined due to the universal property of
Ap):
1
Ap(U) = Tn(U)y,  ug Av Aty poor ZS: Sgn(0) Ug(1) @+ ++ @ Ug(m)-
gESm

It is a right inverse to the canonical projection T,(U) — A, (U) and therefore injective.
To identify multilinear forms with elements in A,,(U*), we consider the non-degenerate
bilinear pairing:

Ap(U) X Ay (U*) = K, (ug A+ A, ul A+ Auy)) — det(u;‘-(ui)) (%)
It is induced by the analogous pairing
T (U)x T (U") > K

because it maps I, (U) x T, (U*)UT,,(U) x I, (U) to zero. The pairing (*) induces the
isomorphism of vector spaces:

A (U) = A (U*) = (A (U))* = Mult(U)

given by
up A ANty = (U, ) = det(ug (ug))).

If {e;} is a basis of U, then A,,(U) is generated by the elements

{62'1/\~--/\6,'m‘1§i1§-"§im§dim(U)}.
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These elements are linearly independent due to

A---Ner

(ejy A=+ Nei, e ]m)

*
j1 = 5i1j1 T 5lm]m

by the above pairing. Hence they form a basis of A,,(U) and the e;, N+ Ae;  form

the dual basis of A, (U*) = (A, (U))*. Tt follows that dim A,, = (dirnriU). In particular
A (U) =0 for m > dimU and A\, (U) = K (non—canonical) for m = dimU.
For the wedge product of alternating multilinear forms

A Mult?(U) x Mult®®(U7) — Mult?!t, (U)

m-+n

the following formula holds:

(aAB) (U1, Umgn) = ——

It soffices tp cjecl tjos om tje case when « and  are monomials (exercise).

Definition 1.53. Let m = dim(U). A nontrivial m-multilinear form 0 # w € Mult¥*(U7) =
A (U*) 2 K is called a volume formon U. If K = R, then a component of A, (U*)~{0}

is an orientation of U. Then a basis {e1,...,en} is positively or negatively oriented if
w(et, ..., en) for a volume form w is positive or negative, respectively.

Functoriality: A homomorphism a.: U — V of vector spaces induces a homomorphism
of vector spces Ay, (a): A, (U) = Ay (V) and an algebra homomorphism A(a): A(U) —
A(V) given by

Up A Aty = aug) A A ).
Example. If A: U — U is an endomorphism and dim = m then dim A,,,(U) = 1 and

the induced endomorphism A,,(A4): Ay, (U) — Ay (U) is the multiplication by a scalar,
namely the determinant of A,

Am(A) = det(A) . idAm(U)

Indeed if A is given wrt. a basis {e;} by a matrix (a;;), then Ae; = >, a;;je; and

Am(A)(el N /\en) = (Zahl@h) A--- A (Za‘immeim) _
i1 im
- Z (H aU(j)j) €o(1) N N €g(m) = det(az‘j)€1 A Nem

O'GSm .]

20.12.2012
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1.9 Differential forms and exterior derivative

Differential forms are families of alternating (= skew symmetric) multilinear forms on
the tangent spaces of M, i.e. sections of certain vector bundles which we construct first:

PTM = ) A((T,M) & N
peEM S——

=Ag (T; N)

in particular

AT, M = R canonically ~» AgTM = M x R (trivial line bundle)

A}, T,M = R non-canonical ~» Aj, TM i.g. non-trivial line bundle ~~ orientation (later)

Combining these, we obtain the exterior algebra bundle

ATM = | AT, M oM
pGM ma,_/
P rT,M
k=0
N—————

exterior algebra over Tp* M

Charts (U, x) for M yield charts for A;TM (resp A*T'M):

ANTU = | NST,M — 2(U) x AZR™
peU e
~r(¥)

Z @iy iy, (i) )p A oo A (dg,)p — (w(p), Zail..-ik (pei, Ao A e;"k)

1<ii<...<ip<m

As in the case of TM and T*M, the coordinate changes are smooth (and defined on
open sets) and A;TM, A*T'M become C*°- manifolds.

Definition 1.54. A smooth differential form of degree k is a smooth section M =
ATM.

A "mixed" differential form is a section M — A*T'M. Hence, if « is a k-form, then
ap := a(p) is an alternating k-multilinear form on 7, M.
In local coordinates

a|U = Z ailmikdazil N oA d.’Elk
11<...<i

The k-forms form a C*(M)-module Q¥ (M), the mixed forms a C°°(M)-algebra
(M) = @ 2 (M)
k=0

Remark: There is the natural C°°-multilin. map, alternating in X,

QF (M) x T(TM) x ... x T(TM) — C®(M)
(Oz,Xl, ,Xk) — (X(Xl,...,Xk)
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and k-fomrs correspond (bijectively) to alternating C°°(M )-multilin. maps
[(TM) x ... x D(TM) —s C®(M).

The algebra structure on A*T,M depends smoothly on p, thus the pointwise wedge
product of smooth forms is again a smooth form

QF (M) x Q4 (M) —L—— QF(M)
Co°(M)—bilin

Pull-back of forms: Let M £5 N be a smooth map of smooth manifolds. The differentials
T,M ﬂ) Ty N induce degree preserving algebra homom.

dF; « N Ty N — AT, M
by
(dEy ape)) (v, s Vk) 1= ap@)(dEp(v1), ..., dFp(vy)),
where ap) € ALTp@p)N; v, .o € T,M.
Doing this pointwise yields the degree preserving (R-algebra)-homom
F*:Q*(N) — Q" (M)

with (F*a)(X1,...X3) = a(dF(X1),...,dF (X)), a € QF(M); X1, ..., X € T(TM).
The smoothness of F*« is seen in local coordinates:

0

OF; 0
I gl =2 g )5,

0y;

FX(dy;) rpy = > (F*dyj <£i|p>) (dzi)yp

%

| P(p)

dy (dF 52 )= 522 (2(r)

. OF; OF;
Frdy;, AN ... \Ndy;, = ilz:ik <8le1 ox) S (6365: OCU) dziy A ... N\ dxi,

OFj; OFjk
= Z Z(Bm/ o >‘...'<']ow>dacz(1)/\ A dxi

11<...<ip 0ESE a(1)

=sgn(0)dzi; A...Adw;,,

OF;
= det (BTJ.T oac) dxiy ANy
’ r,s=1...k

. 0
F Z ajy ... Ay, N ... Ndy;, = Z ( Z Qjy .. e (det <8x2 ) ox)) dxzi, N ... Ndx;,

J1<..<Jk 11<.. <0 \J1<---Jk

smooth
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If M C N is a submanifold and M 5 N the inclusion, then 7*« is called the restriction
of a to M.
Exterior derivative: The total differential is a 1. order differential operator

d:C®(M)=Q°(M) — Q' (M)
on functions (= O-forms), which satisfies the product rule

d(fg) = (df)g + f(dg).
We extend it to differential forms of degree > 1.
Definition 1.55. An antiderivation of degree g € Z on a Z— graded R— algebra A =
@ Aj is an R— linear map D : A — A with
kEZ

D(Ay) = Agtg
satisfying the product rule
D(ara) = (Dag)a; + (—1)*ap(Day),  a € Ap; a1 € 4

Theorem 1.56. There exists an unique extension of the total differential to an an-
tiderivation of degree +1

d: Q" (M) — Q" (M) exterior derivative

with d? = 0.

Proof. i) Uniqueness: Suppose that d is an exterior derivative. We convince ourselves
first that d is a local operator, i.e. that (da), depends only on the germ [a],. Namely,
for ¢ € C*>°(M) holds
d(pa) = dyp a+ pda.

We can choose ¢ s.t. it is supported in a prescribed neighbourhood of p and ¢ := 1 near
p. Then d(pa) = da near p.
If & is another form with [@], = [a],, and if we choose ¢ s.t. p& = pa (everywhere),
then

da = d(pa) = d(pa) = da near p.

It therefore suffices to check the uniqueness locally in domains of charts.
Let a € QF(M). We write a in local coordinates relative to a chart (U,x):

aly = Z @iy i dziy A oo N dx,
11 <...<l

The product rule and d(dz;) = 0 imply:

dOé|U = Zdalllk VAN d$i1 NN dﬂ?lk
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This determines d.
ii) Existence: On the other hand , we can for a chart (U,x) define an exterior derivative

of forms on U by (x). We verify that it has the required properties. For
o= Zail..-ikdxh N A dl‘lk € Qk(U) b= Z bj1...jld$j1 VANAN dl‘jl S QZ(U)

holds:
U (anB)=d"( SN anibigcdwi A Adai Adag, A A da,)
1< <l 1<, <0y
=Y d(ai,..i,bj,..j,) Adwiy A Adag, A A d,

= Z Z (danlk A da:il VARRAN d{L‘Zk VAN bj1---jldxj1 A A dl’jl
+ (—1)kailmikd$il VARVAN dbjlmjz VAN d.%‘jl VANPYAN dl‘jl>
=dVa A B+ (—Drand?s,
i.e. the product rule holds. For f € C°°(M) holds
of s of
' 2
:Z %d%
J
0% f 0% f
———dx; Ndz; = - dx; A\ dx;
Z 056381‘2 i i Z (axj(?a:i Oaci(?a:j) i o

1<j

(@) f =d"(

=0
=0
For forms a € QF(U) follows
2
(dU)2a L S (dU)2as, iy Adaiy A .. A daiy, =0,
=0
Hence dY is an exterior derivative on U; Since exterior derivatives are unique, dV cannot
depend on the chart (i.e. on the coo. x) and we obtain well-defined exterior derivatives
on all chart domains (i.e. open sets diffeom to open subsets of eucl. space).
If W C U is open, (U,x) a chart, we can restrict the chart to W, and have

Yalw) = (@ a)lw  aecQ*(U)
') is another chart, then for o € Q*(M) holds:
(dU(a‘UmUmU’ = dUﬁU’CV‘UnU’ = (dU/(O"U’))’UmU'
The exterior derivatives on the various chart domains are thus compatible and can be

put together to define a global exterior derivative:
da|y == dY(a|y) ae Q' (M)

Therefore, if (U, x
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Lemma 1.57. (compatible with pull-back:) For M L N smooth holds

i.e. dM(F*Oé) _ F*(dNOé) a € Q' (N)

1.10 Partitions of unity

A partition of unity is used to globalise local constructions on manifolds. Let M be
a smooth manifold. We will use the existence of ‘bump functions’: For p € M and a
neighborhood U of this point there exists a smooth function ¢: M — [0, 1] with compact
support supp(¢) C U and ¢ = 1 near p.

Definition 1.58. A smooth partition of unity on M is a family (p,),er of smooth
functions ¢,: M — [0, 1] such that the following holds:

1. The family of supports supp(,) is locally finite, i.e. every point has a neighborhood
which intersects only finitely many supports supp(y,). As a consequence, any
compact subset intersects only finitely many of these supports.

2. The functions sum up to unity

dop=1

el

The partition of unity is called subordinate to an open covering (Uy)aca of M, if there
exists a map of index sets a@: I — A such that supp(p,) C U= ) forall v € 1.

a

Theorem 1.59. For every open covering (Uy)aca of M there exists a partition of unity
(¢.)er subordinate to the covering with compact supports supp(p,) and a countable index
set I.

Lemma 1.60. M admits a compact exhaustion, i.e. there exists an ascending sequence
of open relatively compact subsets G,,, G1 C Go C ..., such that G, C Gpy1 for all
neNand JG, =M.

Proof. The topology of M has a countable basis consisting of relatively compact open
subsets B;, ¢ € N, since the relatively compact subsets in a given basis form a basis
themselves. We inductively construct a sequence (iy,)nen. Choose i1 = 1, then suppose
in, has already been constructed, then G,, = UZ& B; is relatively compact. We choose
int1 > ip + 1 as the minimal number such that G,, C U~} B;. The sets G, have the
required properties. O

Proof of the theorem. For every point p € G, \ G,_1 (compact) we choose an open
neighborhood V), C G,,1+1 \ G;,—2 and a smooth function ,: M — [0, 1] with supp(t,) C
V), with ¢,(p) > 0. By compactness, finitely many points p suffice to cover G,, \ G,,_1 by
the corresponding open subsets {1, > 0}. Hence there exists a countable set {p, | ¢ € I'}
of points such that
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e The set {¢,, > 0} cover M.

e The family of sets V), is locally finite the function ¢ := >, is then well-defined,
smooth and strictly positive.

The normalised functions ¢, := 1, /¢ form a partition of unity with compact supports.
In order to adopt the partitions of unity to a given covering (Uy)aca we choose every
neighborhood V), such that it is contained is one of the covering sets U&'(p)' O

1.11 Orientations

Let V be a d-dimensional R-vector space. Recall from linear algebra that GL(V') has two
connected components, where GL* (V) denotes the component containing the identity.
Since GL(V') operates simply transitively on the set of bases of V, the group GL™ (V)
has two orbits. An orientation of V is a choice of one of these orbits. The basis in this
orbit are then called positively oriented, the others are megatively oriented. Thus the
orientation is a continuous map from the d?-dimensional space of bases of V to {—1,1}.

Two bases {e;},{€;} of V have the same orientation if e; = }_; a;;¢€; with det(a;;) > 0.
A top—dimensional form w € Ayz(V*) = R determines an orientation by defining a basis
(e1,...,eq) as positively oriented, if w(eq,...,eq) > 0.

In the case dim V' = 0 one makes the convention that the orientation consists in the
choice of a sign +. A 0-dimensional vector space has a natural orientation, namely +.

Remark. A finite dimensional complex vector space has a preferred orientation as a real
vector space, because the map

{C-basis} — {R-basis}, (e1,...,e;) > (e1,ie1,...,en,i€y)

distinguishes an orientation of R—bases.

Let now M be a smooth manifold (C! suffices). An orientation of M is, intuitively
speaking, a family of orientations of the tangent spaces T),M which varies continously
on p. This can be made precise as follows:

Definition 1.61. A local basefield is an m—tuple (F;) of vector fields E,...,E, €
['(T'M) defined on an open subset U C M such that (E;(p)) is a basis for T,,M for all
p € U. For instance, local coordintes (U, z) yield the smooth local base field (9/dz;) on
U. An orientation of M is a simultaneous orientation of all tangent spaces T),M such
that for every (continuous) local base field (E;) the orientation sign of (E;(p)) is locally
constant (as a function of p). M is orientable, if an orientation exists. In dimension 0,

one makes the convention that the orientation of a point consists in the choice of a sign
+.

Definition 1.62. A volume form on an m—dimensional manifold M is a nowhere van-
ishing top dimensional form w € Q™ (M), i.e. wy, # 0 for all € M. Volume forms induce
orientations: Call a basis (v1,...,vm) of T, M positively oriented if wy(v1,...,vy) > 0.

Proposition 1.63. Every orientation comes from a volume form.
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Proof. If M is oriented, we can cover M by coordinate charts (U, z) such that the local
basefields (0/0x;) are positively oriented. The orientation is induced on U by the volume
form dz; A --- A dz,. These local volume forms are positive multiples of each other
on the regions of overlap. They can be combined to a global volume form inducing the
given orientation using a partition of unity. U

Remark. If w; and w9 are volume fomres, then there exists a smooth function f: M — R*
with wy = fw;. Both volume fomrs induce the same orientation if and only if f > 0. If
M is connected and orientable, then M has exactly two orientations.

Example. The standard orientation of R is defined by choosing the global base field
(0/0x;) as positively oriented and it is induces by dxj A--- A dzy,.

Definition 1.64. A local diffeomorphism F': M — N of oriented manifolds is orien-
tation preserving if its differential maps positively oriented bases to positively oriented
bases.

Orientation preserving diffeomorphisms F between open subsets of R? are distin-
guished by the fact that the Jacobian determinant det(0F;/0x;) is positive.

For smooth maniolds M one can consider the subatlas A, of the differentiable struc-
tur which consists of all orientation—preserving charts (where R is equipped with its
standard orientation). Vice-versa, a smooth atlas with orientation preserving coordinate
changes defines an oriented smooth structure.

1.12 Manifolds with boudary

The local model for a d-dim manifold with boundary, d > 1, is H¢ := {r1 < 0} C

R?. Partial derivatives and total differential of functions H¢ i> R? are also defined in
boundary points by linear approximation. It is technically convenient to define tangent
vectors in boundary points as derivations. Then for all points p € H?, whether they are
interior or boundary points, holds

T,H d R canonically

Definition 1.65. A d-dim locally euclidean space M? with boundary, d > 1, is a
topological space locally homeomorphic to H¢. If in addition m is Hausdorff and second
countable, then M is a d-dim topological manifold with boundary

To define differentiable structures we use as charts homeomorphisms U = x(U) from
open subsets U C M onto open subsets of H%. A smooth structure is again defined as an
atlas with smooth coordinate changes. If M? is a smooth manifold with boundary, then
p € M is an interior resp. boundary point if it is mapped by a chart to an interior, resp.

boundary point of H?. This is independent of the chart because coordinate changes
map neighbourhoods of interior points to open subsets of R% and hence interior points
to interior points.

o4
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The interior of M is an open subset and inherits a structure as d-dim manifold without
boundary. The boundary 0M of M is closed and inherits a structure as (d — 1)-dim
manifold without boundary.

Example:

1) [a,b] 1-manifold with boundary {a,b}

2) If M1 is a smooth manifold without boundary, f € C*°(M) and a € R is a regular
value of f, then the sublevel {f < a} is a smooth manifold with boundary {f = a}.
Eg. M =R% f(z) = ||z||> = {f < 1} = B¢(0) (unit ball with boundary the unit
sphere.)

Let M922 be a smooth manifold with boundary. Tf M is oriented, then OM is ori-
entable and we choose an orientation of the boundary by the following construction: Let
A, be the subatlas of the smooth structures of M consisting of all orientation preserv-
ing charts (]Rd equipped with standard orientation). The restrictions of these charts to
OM yield an atlas for M with orientation preserving coordinate changes. If one equips
OH?® =2 R with the orientation such that the base field (8%2, . a%d) is positively
oriented, then this determines an orientation of OM.

It can also be describes as follows: A tangent vector v € T, M in p € M points to the outside
if with respect to some (any) chart its 821—compontent is positive. A basis (v,...vq)

of T,0M is positively oriented if and only if the basis (v, vg,...vq) of T,M is positively
oriented. In the case dim M = 1, OM is descrete and we give p € M the positive
orientation if tangent vectors in p pointing to the outside are positively oriented.

1.13 Integration of differential forms over manifolds

M™ smooth, oriented, with boundary (possibly empty). One denotes by (M) the

C°°(M)-module of smooth forms with compact support. We want to define the integral

Jap @ for a € QL (M).

Preparation: U C H open with standard orientation a = f dx1 A ... Adxy,
[ €Cx(U). We put
/da = /f dxy...dx,,.
Lemma 1.66. If U L.V is an orientation preserving diffeo of open subsets of H™ and

a e Qn.(V), then
/F*a = /a
U \%

cpt
Proof. We write o = f dy; A ... A dyn,. In order to determine F} =7 dzqy A ... Ndzy,
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we compute:

o) e -y

Ox1’ 7 Oz, 0x1 Oxm,
OF;
:Zﬁ(%om
OF; 0 0
= det 1. —oF,...,—oF
e<813i> a<8y1o " O )

0 0
(foF) (dy1 A ... Ndy )<6y10 aymo )

=1

= F*a= (foF)-det(g—?) cdxy A ... Ndxy,
J
Applying the transformation formula for integrals, we obtain:

/a:/fdyl...dym:/(foF)| det(aFi) |dzy. .. dzy,
8yj
|4 %4 U ——

>0, b/c F orient. pres.

Ydxy. .. dxy, = /F*a
U

OF,
- /(foF)det(axj

U
O

If a € Q7 (M) has support in a chart domain U and if U = z(U) is an orientation

cpt
/a:: /(wil)*a.

preserving chart, then we define
M z(U)

Due to the lemma, the integral is independent of the chart.
In order to define the integral for an arbitrary form a € Q,(M) we consider a covering

(Ug)sep of M by charts and a partition of unity (¢;)icr subordinate to it, Y, ¢; := 1,

and we put
/a ::Z/goi a.

Note that this is a finite sum because supp(«) is compact and the partition of unity

locally finite.
If (V;)jes is another such covering and (¥;);cs a partition of unity subordinate to it,

then
Z /(pia :Z/cpi\I/ja:Z/\Ilja.
iM LI M J M
N—_——
Y J iV a
i M
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Hence the integral is well defined.
The lemma above generalizes:
Diffeomorphism invariance: If M¢ L, N7 is an orientation preserving diffeomorphism of

oriented manifolds, then holds for a € Q& (N) :

/F*ozz/oz
M N

1.14 Stokes’ Theorem

Theorem 1.67. Let M™>! be an oriented smooth manifold with boundary and o €

QT (M), then
/da: /a,
M

cpt
oM
where the last integral means integration of algopr using the induced orientation of OM.

Remark. Let M = [a, b] with the standard orientation induced by dz and f € €*°(M) =
QO(M). Then

b
= [ - | r@de = 1) - 1) = [ "

[a,b]

So in one dimension, Stokes reduces to the fundamental theorem of calculus.

Proof. Let first M = H™ = {z; < 0} C R™ equipped with the standard orientation by
dzy A+ A dzp,. The induced orientation on the boundary 0H™ = {x¢ = 0} is given by
dzo A -+ A dx,,. We write

043:2041' ::Zfidxl/\---/\a:;i/\---/\ dz,, da; = 8x'(_1)i_1dx1/\."/\ dz,,.
i=1 i=1 i

With Fubini and the fundamental theorem of calculus we obtain

. 0 '
dOél:/ af’t d.’]}'ld[[‘m:/ ( afl(ml,"'axm)dxl) dxgdxm
Hm™ H m

m 0T; —o00 Om;

oOH™ OH™

For ¢ > 1 one obtains similarly
- % 9f; _
da; = (—1) (1,...,opm)dz; | dog -+ - da; -+ - dxy, = 0 = o
Hm Hm=1 \J oo O; SH™

since a;|ggm = 0. So the statement of Stokes’ theorem holds for M = H™. The general
case follows: We choose a partition of unity (,) which is subordinate to an open cover
by charts. Since Stokes holds for forms which are compactly supproted in charts,

/ d(p.) = /aM o
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The assertion follows by summation (both sums are finite since the support of « is
compact). O

1.15 The Poincaré lemma

Definition 1.68. A differential form « is called closed if da = 0. It is called ezact if
there exists a form £ such that a = dg.

Since d? = 0, exact forms are always closed. As an a posteriori motivation for the
introduction of higher differential forms and the exterior derivative we now show (im-
proving the earlier discussion for 1-forms) that closedness is the precise local obstruction
to exactness.

1.16 Cohomology

The sequence of vector space (in fact C*°(M)-module) homomorphisms
0 — QM) 4 QY (M) 4 Q*(M) L (terminates after finitely many steps)

with d> = 0 (complex property ~» homological alg.) is called the de Rham complex of
M. The complex property is equivalent to the fact that exact forms are closed.

The discrepancy between closed and exact forms is measured by the de Rham coho-
mology groups (which are in fact vector spaces)

ker d|Qk(M)
Hf M)=——"-"2 k>0

(de Rham)( ) im d|Qk—1(M) =
They are ‘global obstructions to exactness’.

The wedge product of forms induces a multiplicative structure on

H*(M) = P H*(M),
k>0

namely the cup product:

H*(M) x H\(M) —— H**'(M)

bilinear

([a], [8]) — [a A Bl = [a] U[B]

The cup product is well defined, because the wedge product of a closed form and an
exact form is exact:

da=0, =dy = aAf==x dlaAp)
—_———
\dg//\'y:ta/\d’)/

~—~
=0 3
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H*(M) thus becomes an anticommutative, graded, associative R-algebra with unity
(represented by the constant function 1), the de Rham cohomology ring.

lg-=[1] € H°

A smooth map F': M — N induces a homomorphism of complexes, i.e. the diagram

0——QON) -4 .. — L okN) L ...
lF* JF*
0—— QM) 4 .. — Lok -4 ...

commutes, where F* is the pullback of differential forms. The pullback induces a map
on the cohomology groups and this forms a homomorphism of graded algebras:
H*(N) - 57*(M)
[a] ——— [F*q]
In particular, de Rham cohomology is a differentiable invariant, i.e. diffeomorphisms of
manifolds induce isomorphisms on cohomology.

The 0" cohomology group is the set of locally constant smooth functions on M, so it
is isomorphic to R™(M)  where 7y(M) denotes the set of connected components of M.

0 ~ 0o . ~ mo(M)
H°(M)={feC>®(M): flocally const.} = R
QO(M) <df=0 “closed” {maps mo(M)—R}
The higher cohomology groups contain nontrivial information:

1) Consider S* C C, df € Q(S!). The function 6 is only well defined up to an additive

constant in 2 Z. It is locally equal to arg(z +1y) = arctan £ = 7 +arctan(=*). Since

f is not globally defined, df is in fact not exact.

/d@ = o Shokes df|s1 is not exact.
S1

Hence [df] # 0 in H'(S'). More precisely, for a € Q'(S!) we have

/oz:0<:>ozexact
Sl

So integration over S' gives an isomorphism H'(S') — R.

2) Let M™ be a closed (i.e. compact without boundary), orientable manifold and
w € Q™(M) volume form (i.e. nowhere vanishing). Choose an orientation on M
compatible with w, so [ w > 0. Then by Stokes’ theorem, [w] # 0 in H™(M). More

M

precisely, one can prove, that
H™"(M) =R, [w] |—>/ w,
M

which is well-defined by Stokes, is fact an isomorphism.
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3) left out

4) Let N¥ € M™ be a submanifold. Assume N is a retract of M, i.e. there exists a
smooth retractionr: M — N, such that ror = idy, where t: N — M is the inclusion
map. Then by the functoriality of H*, the induced homomorphisms r*: H*(N) —
H*(M) and ¢*: H*(M) — H*(N) satisfy " o 7" = idg«(x), so 7* is injective. So the
nontrivial cohomology of N can also be found in M.

22.01.2012

If F: M — N is a diffeomorphism, then the induced homomorphism F* on cohomology
is an isomorphism.

Example.
1. S"~1is a retract of R” ~ {0}, so H" 1 (R™ ~ {0}) # 0.

2. R3~{z,y = 0} retracts to a (suitably embedded) copy of S', so H'(R3\ {line}) # 0.
(In fact, it is isomorphic to R).

3. Consider a projection py: My X Ms — M.

24.01.2012
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1.17 Vector calculus on R3

On RB, we have the standard scalar product
(= —) = dz; ® dzy + dre ® dog + daz ® dws,

which induces the standard volume form dV = vol = dx; A dzs A dzs.
We have from the exercises:

QO(R3) —4 OY(R3) —4 02(R3) —L Q3(R3)

0o /3y srad 3y rot 3 div 0 (T3
¢ (R°) —T'(TR’) —= T'(TR?) —— €*°(R”)

We can integrate forms over oriented submanifolds. The metric (inherited from R3)
and orientation (inherited by domains, to be chosen for curves and surfaces) determine
distinguished volume forms on the submanifolds, which allow us to measure length, area
and volume.

In case of a 3-dimensional submanifold 23 C R3, we use the metric and orientation
of R3 and get the volume form

dV = dxq A dza A dzs.

If we have a 2-dimensional submanifold ¥? C R3, there is an induced metric from
R3 and we have to choose an orienation by giving a unit normal vector field v along X.
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Then (v1, v2) is defined to be a positively oriented basis of T3 if and only if (v, vy, v2) is
a positively oriented basis of R3. The 2-dimensional volume form on 3, the area element
is then given by

dA = dV(v,—,—)|z € Q*(%).

A pair (v1,v2) is a positively oriented orthonormal basis of T, % if and only if dA,(vq,v2) =
+1.

Now let C' C R? be a curve, i.e. a 1-dimensional submanifold. Choosing a unit
tangent vector field T along C defines an orientation on C, and the 1-dimensional
volume form, the length element, is then given by

dL = (T, -).

We now rewrite integrals of forms over submanifolds and interpret them physically /geometrically:
Let 023, %2 C! ¢ R3 be 3,2,1-dimensinal submanifolds of R3. Then

wf=fdV = /ngf:/gfdv
Xy = dV(X, = —)s = (X, 1) dV(r,—, =)l = /ELQX - /Z(X, V) dA
uXlo = (X, <)o = (X,T)dL = /CLIX — /C(X, T)dL

Now we can translate Stokes’ theorem into classical integral theorems: For a compactly
supported vector field X along X, we get

/E<rotX,1/>dA:/Z(L2rotX)\g:/Z d(LlX):/axLlX:/az(X,T>dL,

which is exactly the classical Kelvin—Stokes theorem. Now let X be a compactly sup-
ported vector field on . Then

/dideV:/ L3diVX:/ d(LQX):/ (X,v)dA,
Q Q Q o0

which is the Gauf§ integral theorem. As an application of the Gaufl theorem, we insert
X =g-grad f. Then div X = (grad g, grad f) + gAf, so we get

/ ((grad g, grad f) + gAf)dV = / g0y fdA,
Q oQ
which is called Green’s formula. Of particular importance is the case g = 1, where the

formula reduces to
/Ade:/ 0,1 dA.
Q 15)9)

Using the classical integral theorems, we can (by integration) interpret the differential
operators div and rot physically/geometrically:
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1. We apply the Stokes integral theorem to small flat disks (r ~ 0) with unit normal
vector field v:
/ (rot X,»)dA = [ (X, T)dL
r 0D,
The quantity (rot X,v) can then be interpreted as the circulation density of X
per area orthogonal to v, and rot X therefore is the vectorial circulation density
per area. The statement of Stokes’ theorem is then that the summed circulation
density of X over ¥ equals the circulation of X along 93..

2. We apply the Gauf} integral theorem to small balls:

/ divxdv = [ (X,1)dA
. 9B,
This leads to the interpretation of div X as the source density of X. The Gaufl

theorem states that the integrated source density of €2 equals the outward flux
through 0f2.

Example (Electrodynamics). We first work on R3. The electric field is a time-dependent
vector field &' = E,0, + E,0, + E.0.. We consider it as a 1-form

1wkl =FE,dr+ Eydy + E.dz

It is measured by its force on test charges, which is independent of the velocity. The
magnetic field B is also a time dependent vector field. It is measured by its Lorentz
force on moving charges, which does depend on their velocity (L = v x B). This makes
it very natural to consider it as a 2—form 9B = vol(B, —, —). We also have the electric
charge dencity p, which is a time dependent function considered as a 3—form v3p = pdV
and the electric current density J, which is to be considered as a 2—form ¢5J.

Electric and magnetic fields, their interaction and generation by charges and currents,
are described by Maxwell’s equations. They can be formulated as a system of PDE’s,
which is the most efficient description for computations, or alternatively in an integrated
form, which reflects empirical evidence more directly and thus allows physical interpre-
tation.
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